Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAndrea MartinMax Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public review):
Summary:
This study was motivated by the general claim that delayed development of cognitive control can be beneficial for learning, and investigated this claim in the specific domain of conceptual development. A comprehensive set of computational model simulations showed that delaying the onset of semantic control produces faster learning with only minimal effects on conceptual abstraction. The simulations also showed that control was most effective at intermediate levels between modality-specific "spokes" and the multimodal "hub". A meta-analysis of developmental data was consistent with the claim of delayed onset of semantic control: young children show substantially better semantic knowledge than the ability to constrain that knowledge to a specific task at hand.
Strengths:
The computational modelling is based on a very well-established model of semantic cognition, which means that the simulations allow exploring the specific issues under investigation here in the context of a model that accounts for a very large set of semantic cognition phenomena. The simulations are comprehensive - manipulating different parameters of the model provides important insights into how (and why) it works.
In addition to simulations exploring delayed maturation, there is an exploration of where semantic control is most effective, yielding the interesting result that control is most effective when it targets intermediate levels of semantic processing. To my knowledge, this is a novel finding and a concrete prediction for future testing.
The meta-analysis is designed in a very clever way that allows extracting evidence of semantic control from a large body of prior work. The results are quite clear and compelling in showing that semantic knowledge is acquired before children are able to use task demands to constrain the use of that knowledge.
Weaknesses:
Computational models of cognition inherently require simplification in order to focus on the mechanisms under investigation. However, it is also important to keep these simplifications in mind because they limit the generality of the inferences that can be made from the simulation results. Two aspects are important in this context:
(1) The multimodal structure was orthogonal to the surface similarity structure of the concepts to be learned. It is certainly true that multimodal structure does not perfectly mirror surface similarity, but closely related things tend to be perceptually similar. There are exceptions (whales, penguins, etc.), but they are *exceptional*, not typical. It may be that the somewhat extreme dissociation of multimodal and surface similarity structures creates demands that are not faced in natural conceptual development.
(2) Much of the benefit of delayed semantic control seems to be because the model is not penalised for activating task-irrelevant features. This blurs the distinction between being aware of a feature and making a response based on that feature. A full model that also includes a response layer could become a lot more complicated and more difficult to understand, so maybe there is an advantage to using a simpler architecture.
In addition, there is a bit of a misalignment between the model simulations and the meta-analysis. In the model, there are distinct modality-specific "spokes" and control is required in order to focus on modality/spoke in a task-appropriate way. The meta-analysis does not compare a task-defined selection of a modality; it compares the selection of taxonomic vs thematic relations, both of which are multimodal. One way to resolve this is to say that taxonomic and thematic relations are also represented in distinct sub-systems of semantic knowledge and semantic control is needed to select between them in a task-appropriate way.
This is particularly relevant to the inference at the bottom of p. 38: "taxonomic and thematic relationships ...[are]... both being encoded within the same system of representation", which seems in direct contradiction to the present results, or at least to the logic of combining these simulations with this meta-analysis. The simulations are based on semantic control being used to select/constrain the correct distinct sub-system (modality-specific spoke); the meta-analysis is based on semantic control being used to select/constrain the correct relationship type. If these two things are analogous in some way, then the relationship type has to be something like a distinct sub-system.
Reviewer #2 (Public review):
Summary:
This paper investigates the idea that the protracted maturation of the prefrontal cortex - often viewed as a developmental limitation - may actually confer advantages for conceptual learning in children. The authors focus on semantic control processes, which govern the context-sensitive application of conceptual knowledge, and are closely associated with late-developing regions of the prefrontal cortex.
Drawing on a computational model, the paper formally tests whether delayed maturation of semantic control promotes the acquisition of conceptual knowledge. The simulations demonstrate that when semantic control and anatomical connectivity mature later, conceptual learning is accelerated without compromising the integrity of the learned representations. Notably, the benefit is most apparent when control connections target intermediate layers in the computational model, suggesting a nuanced interplay between control processes and the underlying conceptual network.
To validate these computational insights in a human developmental context, the authors conduct a meta-analysis of the classic triadic matching task - a paradigm where participants decide which of two choices best matches a reference concept based on either taxonomic or thematic relations. Critically, when these relations conflict, semantic control is required to select the context-appropriate match. Results indicate that context-sensitive semantic control develops more slowly than basic conceptual knowledge, showing marked improvements between 3 and 6 years of age.
Overall, the paper argues that the delayed development of prefrontal cortex-based control processes allows for a period of less constrained learning, ultimately enhancing conceptual acquisition. The findings challenge the traditional view of late PFC maturation as solely disadvantageous and instead position it as an adaptive feature for building robust conceptual frameworks in early childhood.
Strengths:
(1) Novel Theoretical Contribution
The paper offers a compelling, counterintuitive argument that a developmental lag in the maturation of control processes might be beneficial for semantic learning. This stands in contrast to the conventional framing of late prefrontal cortex (PFC) development as purely disadvantageous (e.g., a "necessary but unfortunate" constraint).
(2) Well-Grounded Computational Approach
The authors propose a neural network model that is both theoretically driven (hub-and-spoke framework) and systematically tested under various conditions (different timelines for control onset, and different connectivity patterns). Their simulations replicate and extend previous findings about how insulating the multimodal hub from direct control inputs helps preserve abstract conceptual representations.
(3) Neuro-anatomical basis
The paper connects its computational claims to empirical neuroanatomy, particularly the lack of direct structural connectivity between ventral ATL (the "hub") and the PFC in humans. This lends biological plausibility to the argument that control signals likely reach the ATL via intermediate regions (e.g., posterior temporal cortex).
(4) Meta-Analysis of Triadic Match-to-Sample
The authors leverage decades of developmental data on conceptual matching tasks, reframing them in terms of semantic control vs. semantic representation. Their analysis nicely illustrates that children can identify semantic relationships (taxonomic or thematic) at age 2 if the task does not require them to select between conflicting semantic relations. In contrast, the ability to choose a task-relevant relation only emerges more robustly in 3-6 years. This developmental pattern aligns with the computational model's predictions.
Weaknesses:
The contribution of the paper might be considered rather specialist, and might not appeal to a broad public, which should be typical of a generalist journal. Moreover, the scope of the model is fairly narrow - its relatively small, controlled training environment raises questions about scalability to more naturalistic, high-dimensional data. Finally, the meta-analysis does not test directly the model predictions in terms of specific outcomes of the task, error patterns, or model fit, but only the developmental pattern which was an already observed phenomenon that in part motivated the hypothesis and the model itself.