Combined transcriptomic, connectivity, and activity profiling of the medial amygdala using highly amplified multiplexed in situ hybridization (hamFISH)

  1. Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
  2. Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, United States
  3. Allen Institute for Neural Dynamics, Seattle, United States

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Joshua Corbin
    Children's National Hospital, Washington, United States of America
  • Senior Editor
    Sacha Nelson
    Brandeis University, Waltham, United States of America

Reviewer #1 (Public review):

In their paper entitled "Combined transcriptomic, connectivity, and activity profiling of the medial amygdala using highly amplified multiplexed in situ hybridization (hamFISH)" Edwards et al. present a new method designated as hamFISH (highly amplified multiplexed in situ hybridization) that enables sequential detection of {less than or equal to}32 genes using multiplexed branched DNA amplification. As proof-of-principle, the authors apply the new technique - in conjunction with connectivity, and activity profiling - to the medial amygdala (MeA) of the mouse, which is a critical nucleus for innate social and defensive behaviors.

As mentioned by Edwards et al., hamFISH could prove beneficial as an affordable alternative to other in situ transcriptomic methods, including commercial platforms, that are resource-intensive and require complex analysis pipelines. Thus, the authors envision that the method they present could democratize in situ cell-type identification in individual laboratories.

The data presented by Edwards et al. is convincing. The authors use the appropriate and validated methodology in line with the current state-of-the-art. The paper makes a strong case for the benefits of hamFISH when combining transcriptomics studies with connectivity tracing and immediate early gene-based activity profiling. Notably, the authors also discuss the caveats and limitations of their study/approach in an open and transparent manner.

Comments on revisions:

In their revised paper, Edwards et al. have made an effort to improve manuscript clarity. Revisions made address the non-public "recommendations for the authors." The main criticism that prevents a more enthusiastic overall assessment, i.e., absence of some more in-depth hypothesis-based analysis (though, as originally mentioned, maybe beyond the study's scope), is still valid.

Reviewer #2 (Public review):

The authors describe the development and implementation of hamFISH, a sensitive multiplexed ISH method. They leverage a pre-existing scRNA-seq dataset for the MeA to design 32 probes that combinatorically represent MeA neuronal populations - ~80% of MeA neurons express at least three of these 32 markers. Using these markers to assess the spatial organization of the MeA, the authors identify a novel population of Ndnf+ projection neurons and characterize their connectivity with anterograde and retrograde labeling. They additionally combine hamFISH with CTB labeling of three principal MeA projections sites to show that 75% of MeA neurons have only a single projection target. Finally, they engage adult male mice in encounters with other adult males (aggression), females (mating), and pups (infanticide), followed with hamFISH and c-fos labeling to relate cell identity to behavior. Their overall conclusion is that hamFISH-defined cell types are broadly active to multiple sensory stimuli. However, the data presented are not sufficient to conclude that no selectivity exists.

A strength of the manuscript is the novel hamFISH approach, which is technically innovative and could potentially be adopted by many labs. However, a weakness is that the 32 selected hamFISH marker genes employed here are predominantly neuropeptides. These genes, such as Tac1, Cartpt, Adcyap1, Calb1, and Gal, are expressed throughout the MeA, and many other brain regions and are not selective for transcriptomic cell types or developmental lineages. The use of hamFISH probes that provide a more stringent classification of cell type or cell identity could potentially provide a different picture of sensory response selectivity within the MeA. Thus, although the data in the manuscript are exemplary, the biological insight into MeA function is more limited.

Reviewer #3 (Public review):

Summary:

In this manuscript, Edwards et al. describe hamFISH, a customizable and cost-efficient method for performing targeted spatial transcriptomics. hamFISH utilizes highly amplified multiplexed branched DNA amplification, and the authors extensively describe hamFISH development and its advantages over prior variants of this approach.

The authors then used hamFISH to investigate an important circuit in the mouse brain for social behavior, the medial amygdala (MeA). To develop a hamFISH probe set capable of distinguishing MeA neurons, the authors mined published single cell RNA-sequencing datasets of the MeA, ultimately creating a panel of 32 hamFISH probes that mostly cover the identified MeA cell types. They evaluated over 600,000 MeA cells and classified neurons into 16 inhibitory and 10 excitatory types, many of which are spatially clustered.

The authors combined hamFISH with viral and other circuit tracer injections to determine whether the identified MeA cell populations sent and/or received unique inputs from connected brain regions, finding evidence that several cell types had unique patterns of input and output. Finally, the authors performed hamFISH on the brains of male mice that were placed in behavioral conditions that elicit aggressive, infanticidal, or mating behaviors, finding that some cell populations are selectively activated (as assessed by c-fos mRNA expression) in specific social contexts.

Strengths:

(1) The authors developed an optimized tissue preparation protocol for hamFISH and implemented oligopools instead of individually synthesized oligonucleotides to reduce costs. The branched DNA amplification scheme improved smFISH signal compared to previous methods, and multiple variants provide additional improvements in signal intensity and specificity. Compared to other spatial transcriptomics methods, the pipeline for imaging and analysis is streamlined, and is compatible with other techniques like fluorescence-based circuit tracing. This approach is cost-effective and has several advantages that make it a valuable addition to the list of spatial transcriptomics toolkits.

(2) Using 31 probes, hamFISH was able to detect 16 inhibitory and 10 excitatory neuron types in the MeA subregions, including the vast majority of cell types identified by other transcriptomics approaches. The authors quantified the distributions of these cell types along the anterior-posterior, dorsal-ventral, and medial-lateral axes, finding spatial segregation among some, but not all, MeA excitatory and inhibitory cell types. The authors additionally identified a class of inhibitory neurons expressing Ndnf (and a subset of these that express Chrna7) that project to multiple social chemosensory circuits.

(3) The authors combined hamFISH with MeA input and output mapping, finding cell-type biases in the projections to the MPOA, BNST, and VMHvl, and inputs from multiple regions.

(4) The authors identified excitatory and inhibitory cell types, and patterns of activity across cell types, that were selectively activated during various social behaviors, including aggression, mating, and infanticide, providing new insights and avenues for future research into MeA circuit function.

Weaknesses:

(1) Gene selection for hamFISH is likely to still be a limiting factor, even with the expanded (32-probe) capacity. This may have contributed to the lack of ability to identify sexually dimorphic cell types (Fig. S2B). This is an expected tradeoff for a method that has major advantages in terms of cost and adaptability.

(2) Adaptation of hamFISH, for example, to adapt it to other brain regions or tissues, may require extensive optimization. This does not preclude it from being highly useful for other brain regions with extra effort.

(3) Pairing this method with behavioral experiments is likely to require further optimization, as c-fos mRNA expression is an indirect and incomplete survey of neuronal activity (e.g. not all cell types upregulate c-fos when electrically active). As such, there is a risk of false negative results that limit its utility for understanding circuit function.

(4) The incompatibility of hamFISH with thicker tissue samples and minimal optical sectioning introduce additional technical limitations. For example, it would be difficult to densely sample larger neural circuits using serial 20 micron sections.

Author response:

The following is the authors’ response to the original reviews

Reviewing Editor Comments:

Recommendations for improvement:

(1) Address data presentation, editing, and other issues of lack of clarity as pointed out by the reviewers.

We have now addressed all comments from reviewers that identify editing errors and lack of clarity issues. Regarding data presentation we have made some changes, for example including a combined heatmap to show consistency between row names (Figure 2 - figure supplement 2), but also kept some stylistic features such as the balance between main and supplemental figures that we think fits more naturally with the story of the paper.

(2) Inclusion of requested and critical details in the methodology section, an important component for broad applicability of a new methodology by other investigators.

We have added the requested details to the methods section, specifically the RCA protocol.

(3) More in-depth discussion of the limitations of the methodology and approach to capture important but more complex components of tissues of interest, for example, sexual dimorphism.

We have now edited the ‘pitfalls of study’ section in the discussion to include further detail of the limitations of the number of genes that can be used to deeply profile transcriptomic types, including sexual dimorphism. Regarding its use in other tissues of interest, we have now included a reference in the discussion (Bintu et al., 2025) where a similar strategy has been used to profile cells in the olfactory epithelium and olfactory bulb. We have also used hamFISH in other brain areas (as commented in our public reviews responses) but as this is unpublished work we will refrain from mentioning it in the main text.

Reviewer #1 (Recommendations for the authors):

The manuscript by Edwards et al. would benefit from minor revisions. Here, we outline several points that could / should be addressed:

(1) General balance of data presentation between main and supplementary figures

(a) quantifications were often missing from main figures and only presented in the supplements

Thank you for raising this point. We believe that the balance of panels between the main and supplemental figures matches our story and results section well with quantifications included in the main figures where appropriate.

(b) more informative figure legends in supplements (e.g.: Supplementary Figure I - Figure 3)

We have now revised the figure legends and added more description where appropriate.

(c) missing subpanel in Figure 3; figure legend describes 3H, which is missing in the figure

We thank the reviewer for pointing this out and have now amended the subpanel.

stand-alone figure on inhibitory neuron cluster i3 cells

We agree that this is an important characterisation of i3 cells but decided to place this figure in the supplement as it does not fall within the main storyline (defining transcriptomic characterisation of cell types in a multimodal fashion), but rather acts as accessory information for those specifically interested in these inhibitory cell types.

statistical tests used (e.g.: Figure 1 C -, Supplementary Figure 3 - Figure 2)/ graphs shown (Supplementary Figure 1 - 1 D)

The statistical tests used are described in the figure legends.

t-SNE dimensionality reduction of positional parameters

Explanations of the t-SNE dimensionality reduction of positional parameters can be found in the materials and methods.

(d) heatmaps similarly informative and more convincing

We have included an extra heatmap (Figure 2 - figure supplement 2) in response to Reviewer 3’s comment (see below) in order to more easily follow genes across all the different clusters. We hope this helps to make the heatmaps more convincing and informative.

code availability

Code availability is described in the methods section of the manuscript.

page 6, 3rd paragraph wrong description of PMCo abbreviation

We thank the reviewer for identifying the mistake and we have now amended it.

Reviewer #2 (Recommendations for the authors):

The pre-existing scRNA-seq dataset on which the manuscript is based is an older Drop-seq dataset for which minimal QC information is provided. The authors should include QC information (genes/cells and UMIs/cells) in the Methods. Moreover, the Seurat clustering of these cells and depiction of marker genes in feature plots are not shown.

It is therefore difficult to determine how the authors selected their 31 genes for their hamFISH panel, or how selective they are to the original Drop-seq clusters.

The QC information of this dataset can be found in the original publication (Chen et al., 2019) with our clustering methods described in the materials and methods section. We have not included individual gene names in our heatmap plots for presentation purposes (there are over 200 rows), but the data and cluster descriptions can be found in supplemental tables.

Reviewer #3 (Recommendations for the authors):

(1) The imaging modality is not entirely clear in the methods. The microscopy technique is referenced to prior work and involves taking z-stacks, but analysis appears to be done on maximum z-projections, which seems like it would introduce the risk of false attribution of gene expression to cells that are overlapping in "z".

Thank you for pointing out the technical limitation of the microscopy. For imaging we used epifluorescence microscopy with 14x 500 nm z-steps to collect our raw data and generate a maximum intensity projection for further analysis. Because of the thin sections (10 um) used for the imaging, the overlap between cells in z is expected to be minimal. However, we cannot completely rule out misattribution raised in the comment. The method section contains this information.

(2) Supplemental Figure 1 - Figure Supplement 2B: RCA looks significantly different when compared to v2 smFISH from the representative image, although it is written as comparable. Additionally, there is no information about RCA mentioned in the Materials and Methods section. Supplemental Figure 1 - Figure Supplement 2B: The figure label for RCA is missing.

By comparable we are referring to the intensity rather than pattern as mentioned in the results section. We did not analyze the number of spots. It is true that the pattern of RCA signal is much sparser due to its inherent insensitivity compared with hamFISH. We thank the reviewer for identifying the lack of a methodological RCA description and have amended the manuscript to include this. We have also now amended the missing RCA label in the figure.

(3) Figure 2C and associated supplement: The rows (each gene) are not consistent across the subpanels (i.e. they do not line up left-to-right), this makes it difficult for the reader to follow the patterns that distinguish the cell types in each subset.

We have done this as we believe it makes for an easier interpretation of inhibitory vs excitatory clusters for the reader. However, we agree with the reviewer that one may wish to look at the dataset as a whole with a consistent gene order, and we have now provided this in the corresponding supplemental figure.

(4) "Consistent with previous work, most inhibitory classes are localized in the dorsal and ventral subdivisions of the MeA, whereas excitatory neurons occupy primarily the ventral MeA (Figure 2D, Figure 2 - Figure Supplement 2C, Figure 1D)". - The reference to Figure 1D seems to be an error.

We thank the reviewer for identifying the mistake, and we have now amended it.

(5) Supplemental Figure 2 - Figure Supplement 1, "published by Chen et al." - should have a proper reference number to be compatible with the rest of the manuscript. Also, the lack of gene info makes it difficult to understand Panel A. Finally, the text on Panel B refers to "hamMERFISH" which seems an error.

We thank the reviewer for identifying the mistake on Panel B, it has now been amended. We have also changed the reference format. Regarding the lack of gene information in panel A, it is difficult to present all row names due to the large number of rows (>200), but this information can be found in supplemental table 2.

(6) Supplemental Figure 2 - Figure Supplement 1: there are thin dividing lines drawn on each section, but these are not described or defined, making it difficult to understand what is being delineated.

We thank the reviewer for identifying this omission and have now edited to figure legend to contain a description.

(7) Page 4, "...we found 26 clusters in cells that are positive for Slc32a1 (inhibitory) or Slc17a6 (encoding Vglut2 and therefore excitatory) positive (Figure 2 - figure supplement 1A, Table S2)."

This seems to be an error as Figure 2 - figure supplement 1A does not show this.

We double-checked that this description describes the panel accurately.

(8) "The clustering revealed that inhibitory and excitatory classes generally have different spatial properties (Figure 1E, left), although the salt-and-pepper, sparse nature of e10 (Nts+) cells is more similar to inhibitory cells than other excitatory classes".

The references to Figure 1E's should be to Figure 2E.

We thank the reviewer for identifying the mistake, and we have now amended it.

(9) "Comparison of the proportion of all cells that are cluster X vs projection neurons labelled by CTB that are cluster X". Please explain cluster X in this context.

We have now rephrased this sentence in the figure legend for clarity.

(10) Figure 3 - figure supplement 3: There appears to be quite a bit of heterogeneity in the patterns of activity across clusters even within behavioral contexts (e.g. the bottom 2 animals paired with females). It might be worth commenting on (or quantifying) whether there were any evident differences in the social behaviors observed (e.g. mating or not?) in individuals demonstrating these patterns.

We thank the reviewer for this observation. We unfortunately did not quantify the behaviors, but we agree that more work is needed to link the pattern of c-fos activity with incrementally measured behavioral variables. At least, we did not include animals that did not display the anticipated social behaviours (as described in the materials and methods) in the in situ transcriptomic profiling work.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation