Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJoshua CorbinChildren's National Hospital, Washington, United States of America
- Senior EditorSacha NelsonBrandeis University, Waltham, United States of America
Reviewer #1 (Public review):
In their paper entitled "Combined transcriptomic, connectivity, and activity profiling of the medial amygdala using highly amplified multiplexed in situ hybridization (hamFISH)" Edwards et al. present a new method designated as hamFISH (highly amplified multiplexed in situ hybridization) that enables sequential detection of {less than or equal to}32 genes using multiplexed branched DNA amplification. As proof-of-principle, the authors apply the new technique - in conjunction with connectivity, and activity profiling - to the medial amygdala (MeA) of the mouse, which is a critical nucleus for innate social and defensive behaviors.
As mentioned by Edwards et al., hamFISH could prove beneficial as an affordable alternative to other in situ transcriptomic methods, including commercial platforms, that are resource-intensive and require complex analysis pipelines. Thus, the authors envision that the method they present could democratize in situ cell-type identification in individual laboratories.
The data presented by Edwards et al. is convincing. The authors use the appropriate and validated methodology in line with the current state-of-the-art. The paper makes a strong case for the benefits of hamFISH when combining transcriptomics studies with connectivity tracing and immediate early gene-based activity profiling. Notably, the authors also discuss the caveats and limitations of their study/approach in an open and transparent manner.
Comments on revisions:
In their revised paper, Edwards et al. have made an effort to improve manuscript clarity. Revisions made address the non-public "recommendations for the authors." The main criticism that prevents a more enthusiastic overall assessment, i.e., absence of some more in-depth hypothesis-based analysis (though, as originally mentioned, maybe beyond the study's scope), is still valid.
Reviewer #2 (Public review):
The authors describe the development and implementation of hamFISH, a sensitive multiplexed ISH method. They leverage a pre-existing scRNA-seq dataset for the MeA to design 32 probes that combinatorically represent MeA neuronal populations - ~80% of MeA neurons express at least three of these 32 markers. Using these markers to assess the spatial organization of the MeA, the authors identify a novel population of Ndnf+ projection neurons and characterize their connectivity with anterograde and retrograde labeling. They additionally combine hamFISH with CTB labeling of three principal MeA projections sites to show that 75% of MeA neurons have only a single projection target. Finally, they engage adult male mice in encounters with other adult males (aggression), females (mating), and pups (infanticide), followed with hamFISH and c-fos labeling to relate cell identity to behavior. Their overall conclusion is that hamFISH-defined cell types are broadly active to multiple sensory stimuli. However, the data presented are not sufficient to conclude that no selectivity exists.
A strength of the manuscript is the novel hamFISH approach, which is technically innovative and could potentially be adopted by many labs. However, a weakness is that the 32 selected hamFISH marker genes employed here are predominantly neuropeptides. These genes, such as Tac1, Cartpt, Adcyap1, Calb1, and Gal, are expressed throughout the MeA, and many other brain regions and are not selective for transcriptomic cell types or developmental lineages. The use of hamFISH probes that provide a more stringent classification of cell type or cell identity could potentially provide a different picture of sensory response selectivity within the MeA. Thus, although the data in the manuscript are exemplary, the biological insight into MeA function is more limited.
Reviewer #3 (Public review):
Summary:
In this manuscript, Edwards et al. describe hamFISH, a customizable and cost-efficient method for performing targeted spatial transcriptomics. hamFISH utilizes highly amplified multiplexed branched DNA amplification, and the authors extensively describe hamFISH development and its advantages over prior variants of this approach.
The authors then used hamFISH to investigate an important circuit in the mouse brain for social behavior, the medial amygdala (MeA). To develop a hamFISH probe set capable of distinguishing MeA neurons, the authors mined published single cell RNA-sequencing datasets of the MeA, ultimately creating a panel of 32 hamFISH probes that mostly cover the identified MeA cell types. They evaluated over 600,000 MeA cells and classified neurons into 16 inhibitory and 10 excitatory types, many of which are spatially clustered.
The authors combined hamFISH with viral and other circuit tracer injections to determine whether the identified MeA cell populations sent and/or received unique inputs from connected brain regions, finding evidence that several cell types had unique patterns of input and output. Finally, the authors performed hamFISH on the brains of male mice that were placed in behavioral conditions that elicit aggressive, infanticidal, or mating behaviors, finding that some cell populations are selectively activated (as assessed by c-fos mRNA expression) in specific social contexts.
Strengths:
(1) The authors developed an optimized tissue preparation protocol for hamFISH and implemented oligopools instead of individually synthesized oligonucleotides to reduce costs. The branched DNA amplification scheme improved smFISH signal compared to previous methods, and multiple variants provide additional improvements in signal intensity and specificity. Compared to other spatial transcriptomics methods, the pipeline for imaging and analysis is streamlined, and is compatible with other techniques like fluorescence-based circuit tracing. This approach is cost-effective and has several advantages that make it a valuable addition to the list of spatial transcriptomics toolkits.
(2) Using 31 probes, hamFISH was able to detect 16 inhibitory and 10 excitatory neuron types in the MeA subregions, including the vast majority of cell types identified by other transcriptomics approaches. The authors quantified the distributions of these cell types along the anterior-posterior, dorsal-ventral, and medial-lateral axes, finding spatial segregation among some, but not all, MeA excitatory and inhibitory cell types. The authors additionally identified a class of inhibitory neurons expressing Ndnf (and a subset of these that express Chrna7) that project to multiple social chemosensory circuits.
(3) The authors combined hamFISH with MeA input and output mapping, finding cell-type biases in the projections to the MPOA, BNST, and VMHvl, and inputs from multiple regions.
(4) The authors identified excitatory and inhibitory cell types, and patterns of activity across cell types, that were selectively activated during various social behaviors, including aggression, mating, and infanticide, providing new insights and avenues for future research into MeA circuit function.
Weaknesses:
(1) Gene selection for hamFISH is likely to still be a limiting factor, even with the expanded (32-probe) capacity. This may have contributed to the lack of ability to identify sexually dimorphic cell types (Fig. S2B). This is an expected tradeoff for a method that has major advantages in terms of cost and adaptability.
(2) Adaptation of hamFISH, for example, to adapt it to other brain regions or tissues, may require extensive optimization. This does not preclude it from being highly useful for other brain regions with extra effort.
(3) Pairing this method with behavioral experiments is likely to require further optimization, as c-fos mRNA expression is an indirect and incomplete survey of neuronal activity (e.g. not all cell types upregulate c-fos when electrically active). As such, there is a risk of false negative results that limit its utility for understanding circuit function.
(4) The incompatibility of hamFISH with thicker tissue samples and minimal optical sectioning introduce additional technical limitations. For example, it would be difficult to densely sample larger neural circuits using serial 20 micron sections.