Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorHao ZhuThe University of Texas Southwestern Medical Center, Dallas, United States of America
- Senior EditorLynne-Marie PostovitQueens University, Kingston, Canada
Reviewer #1 (Public review):
Summary:
The significance of Notch in liver cancer has been inconsistently described to date. The authors conduct a PDX screen using JAG1 ab and identify 2 sensitive tumor models. Further characterization with bulk RNA seq, scRNA seq, and ATAC seq of these tumors was performed.
Strengths:
The reliance on an extensive panel of PDXs makes this study more definitive than prior studies.
Gene expression analyses seem robust.
Identification of a JAG1-dependent signature associated with hepatocyte differentiation is interesting.
Weaknesses:
The introduction is rather lengthy and not entirely accurate. HCC is a single cancer type/histology. There may be variants of histology (allusion to "mixed-lineage" is inaccurate as combined HCC-CCa are not conventionally considered HCC and are not treated as HCC in clinical practice as they are even excluded from HCC trials), but any cancer type can have differences in differentiation. Just state there are multiple molecular subtypes of this disease.
There is minimal data on the PDXs, despite this being highlighted throughout the text. Clinical and possibly some molecular characterization of these cancers should be provided. It is also odd that the authors include only 35 HCC and then a varied sort of cancer histologies, which is peculiar given their prior statements regarding the heterogeneity of HCC.
"super-responder" is not a meaningful term, I would eliminate this use as it has no clinical or scientific convention that I am aware of.
The "expansion" of the PDX screen is poorly described. Why weren't these PDXs included in the first screen? This is quite odd as the responses in the initial screen were underwhelming. What was the denominator number of all PDXs that were assessed for JAG1 and NOTCH2 expression? This is important as it clarifies how relevant JAG1 inhibition would be to an unselected HCC population.
Was there some kind of determination of the optimal dose or dose dependency for the JAG1 ab? The original description of the JAG1 ab was in mouse lungs, not malignant or liver cells. In addition, supplementary Figure 2D is missing. There needs to be data provided on the specificity of the human-specific JAG1 ab and the anti-NOTCH2 ab. I'm not familiar with these ab, and if they are not publicly accessible reagents, more transparency on this is needed. In addition, given the reliance of the entire paper on these antibodies, I would recommend orthogonal approaches (either chemical or genetic) to confirm the sensitivity and insensitivity of select PDXs to Notch inhibition.
scRNA-seq data seems to add little to the paper and there is no follow-up of the findings. Are the low-expressing JAG1 cells eventually enriched in treated tumors contributing to disease recurrence?
The discussion should be tempered. The finding of only 2 PDXs that are sensitive out of 45+ tumors treated or selected for indicates that JAG1/NOTCH2 inhibition is likely only effective in rare HCC.
Reviewer #2 (Public review):
Summary:
The authors used a large panel of hepatocellular carcinoma patient-derived xenograft models to test the hypothesis that the developmental dependence of the liver on Jagged1-Notch2 signaling is retained in at least a subset of hepatocellular carcinomas. This led to the identification of two models that were extraordinarily sensitive to well-characterized, specific inhibitory antibodies against Jagged1 or Notch2. Based on additional analyses in these in vivo models, the authors provide compelling evidence that the response is due to the inhibition of human Notch2 and human Jagged1 on tumor cells and that this inhibition leads to a change in gene expression from a progenitor-like state to a hepatocyte-like state accompanied by cell cycle arrest. This change in cell state is associated with up-regulation of HNF4a and CEBPB and increased accessibility of predicted HNF4a and CEBPB genomic binding sites, accompanied by loss of accessibility to sequences predicted to bind TFs linked to multipotent liver progenitors. The authors put forth a plausible model in which inhibition of Notch2 downregulates transcriptional repressors of the Hairy/Enhancer of Split family, leading to increased expression of CEBPB and changes in gene expression that drive hepatocyte differentiation.
Strengths:
The strengths of the paper include the breadth of the preclinical screen in PDX models (which may be of an unprecedented size as preclinical trials go), the high quality of the well-characterized antibodies used as therapeutics and as biological perturbagens, the quality of the data and data analysis, and the authors balanced discussion of the strengths and weaknesses of their findings.
Weaknesses:
The principal weakness is the inability to clearly demonstrate the "translatability" of the PDX findings to primary human hepatocellular carcinoma.
Additional Comments:
Hepatocellular carcinoma is increasing in frequency and is difficult to treat; cure is only possible through early diagnosis and surgery, often in the form of liver transplantation. It is also a common cancer, and so even if only 5% of tumors (a value based on the frequency of super-responders in this preclinical trial) fall into the Jagged1-Notch2 group defined by Seidel et al., the development of an effective therapy for this subgroup would be a very important advance. The chief limitation of their work is that it stops short of identifying primary human hepatocellular carcinomas that correspond to the super-responder PDX models. It can be hoped that their intriguing observations will spur work aimed at filling this gap
There are several other loose ends. An unusual feature of this model is that both Jagged 1 and Notch2 are expressed in the same cells, and even in the same individual cells. In developmental systems, the expression of ligands and receptors in the same cell generally produces receptor inhibition rather than activation, a phenomenon described as cis inhibition. Their super-responder tumor models appear to break this rule, and how and why this is so remains to be understood. A follow-up question is what explains the observed heterogeneity in tumor cells, both at the level of Notch2 activation and scRNAseq clustering, and whether these different cell states are static or interchangeable.
Another unanswered issue pertains to the nature of the tumor response to Notch signaling blockade, which appears to be mainly cell cycle arrest. There are a number of human tumors with cell autonomous Notch signaling due to gain of function Notch receptor mutations that also respond to Notch blockade with cell cycle arrest, such as T cell acute lymphoblastic leukemia (T-ALL). In general, clinical trials of pan-Notch inhibitors such as gamma-secretase inhibitors have been disappointing in such tumors, perhaps reflecting a limitation of treatments with significant toxicity that do not kill tumor cells directly. It could be argued that this limitation will be mitigated by the apparently excellent safety profile of Notch2 blocking antibody, which perhaps could be administered for a sustained period, akin to the use of tyrosine kinase inhibitors in chronic myeloid leukemia---but this remains to be determined.
A minor comment is reserved for the statement in the discussion that "In chronic myelomonocytic leukemia, which results from an inactivating mutation in the y-secretase complex component nicastrin, Notch signaling has a tumor suppressive function, that is mediated through direct repression of CEBPA and PU.1 by HES1 (Klinakis et al., 2011)". Thousands of cases of CMML and related myeloid tumors have been subjected to whole exome and even whole genome sequencing without the identification of Notch signaling pathway mutations. Thus, an important tumor suppressive role for Notch-mediated through HES1 in myeloid tumors is not proven.
Reviewer #3 (Public review):
Summary:
Notch is active in HCC, but generally not mutated. The authors use a JAG1-selective blocking antibody in a large panel of liver cancer patient-derived xenograft models. They find JAG-dependent HCCs, and these are aggressive and proliferative. Notch inhibition induces cycle arrest and promotes hepatocyte differentiation, through upregulation of CEBPA expression and activation of existing HNF4A, mimicking normal developmental programs.
The authors use aJ1.b70, a potent and selective therapeutic antibody that inhibits JAG1 against PDX models. They tested over 40 PDX models and found a handful of super-responders to single-agent inhibition. In LIV78 and Li1035 cancer cells, NOTCH2 was expressed and required, in contrast to NOTCH1. RNA-seq showed that the responsive HCCs resembled the S2 transcriptional class of HCCs, which were enriched for Notch-dependent models. They conclude that these dependent tumors have transcriptomes that resemble a hybrid progenitor cell expressing FGF9 and GAS7. Inhibition was able to induce hepatocyte differentiation away from a NOTCH-driven progenitor program. scRNA-seq analysis showed a large population of NOTCH-JAG expressing cells but also showed that there are cells that did not. Not surprisingly, NOTCH2 inhibition leads to increased CEBPA and HNF4A transcriptional activity, which are standard TFs in hepatocytes.
Strengths:
The paper provides useful information about the frequency of HCCs and CCA that respond to NOTCH inhibition and could allow us to anticipate the super-responder rate if these antibodies were actually used in the clinic. The inhibitor tools are highly specific, and provide useful information about NOTCH activities in liver cancers. The large number of PDXs and the careful transcriptomic analyses were positives about the study.
Weaknesses:
The paper is mostly descriptive.