Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnne-Florence BitbolEcole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Senior EditorJoshua SchifferFred Hutchinson Cancer Research Center, Seattle, United States of America
Reviewer #1 (Public review):
Summary:
The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.
Strengths:
The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.
The manuscript is well-written and organized.
Weaknesses:
The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.
Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.
Questions or suggestions for further discussion:
I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.
The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199 (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?
I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).
Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.
Reviewer #2 (Public review):
Summary
This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 12.
(1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).
(2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).
The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.
There is a lot of information to be found in the full fitness landscape of env. The enormous strength of reversion-to-consensus in the patterns is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. This is all of high interest to HIV researchers.
Strength of evidence
One limitation is, of course, that the fitness model is constant in time when the immune challenge is variable and changing. This simplification may complicate some interpretations.
Equation 12 in the methods is really a beautiful tool because it is so simple, but accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. However, the reliance on incomplete observations of the frequency leads to complications that must be carefully (re)addressed here.
For instance, the consistent finding of strong selection in hypervariable regions is biologically intuitive but so striking, that I worry that it might be the result of a bias for selection in high entropy regions. Mutational and covariance terms in equation 12 might be underestimated, due to finite sampling effect in highly diverse populations. Sampling effects lead to zeros in x(t) when actual frequency zeros might be rare at the population sizes of HIV viral loads and mutation rates. Both mutational flux and C underestimation will bias selection upward in eq. 12. The prior papers (1) and (2) seem to show robustness to finite sampling effects, but, again, more care needs to be shown that this robustness transfers to the amino acid inference under these conditions. That synonymous sites are rarely selected for in the nucleotide level is a good sign, and it may be a matter of simply fully explaining the amino-acid level model.
Uncertainty propagates to the later parts of the paper, eg. HIV and SIV shared patterns might be the result of shared biases in the method application. However, this worry does not extend to the apples-to-apples comparison of fitness trajectories across individuals (Figures 5 and 6) which I think are robust (for these sample sizes). The timing evidence is slightly weakened by the fact that bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.
Overall this is a convincing paper, part of a larger admirable project of accurately inferring complete fitness landscapes.
Reviewer #3 (Public review):
Summary:
Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simian-human immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.
Strengths:
A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance.
Weaknesses:
However, the study has some limitations. The most significant weakness is that the authors do not sufficiently discuss the implications of the observed similarities. While the identification of shared evolutionary patterns (e.g., Figure 5) is intriguing, the study would benefit from a more explicit discussion of what these findings mean for instance, in the context of HIV vaccine design, immunotherapy, or fundamental viral-host interactions. Even speculative interpretations could provide valuable insights into the broader significance of these results.
A secondary, albeit less critical, limitation is the placement of methodological details in the Supplementary Information. While it is understandable that the authors focus on results in the main text - especially since the methodology is not novel and has been previously described in earlier publications - some readers might benefit from a more thorough presentation of the method within the main paper.
Conclusions:
Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques. While the quantitative comparison between species is a notable contribution, a deeper discussion of its broader implications would strengthen the paper's impact.