Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorTessa DekkerUniversity College London, London, United Kingdom
- Senior EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
This paper by Karimian et al proposes an oscillator model tuned to implement binding by synchrony (BBS*) principles in a visual task. The authors set out to show how well these BBS principles explain human behavior in figure-ground segregation tasks. The model is inspired by electrophysiological findings in non-human primates, suggesting that gamma oscillations in early visual cortex implement feature-binding through a synchronization of feature-selective neurons. The psychophysics experiment involves the identification of a figure consisting of gabor annuli, presented on a background of gabor annuli. The participants' task is to identify the orientation of the figure. The task difficulty is varied based on the contrast and density of the gabor annuli that make up the figure. The same figures (without the background) are used as inputs to the oscillator model. The authors report that both the discrimination accuracy in the psychophysics experiment and the synchrony of the oscillators in the proposed model follow a similar "Arnold Tongue" relationship when depicted as a function of the texture-defining features of the figure. This finding is interpreted as evidence for BBS/gamma synchrony being the underlying mechanism of the figure-ground segregation.
- Note that I chose to use "BBS" over gamma synchrony (used by the authors) in this review, as I am not convinced that the authors show evidence for synchronization in the gamma-band.
Strengths:
The design of the proposed model is well-informed by electrophysiological findings, and the idea of using computational modeling to bridge between intracranial recordings in non-human primates and behavioral results in human participants is interesting. Previous work has criticized the BBS synchrony theory based on the observation that synchronization in the gamma-band is highly localized and the frequency of the oscillation depends on the visual features of the stimulus. I appreciate how the authors demonstrate that frequency-dependence and local synchronization can be features of BBS, and not contradictory to the theory. As such, I feel that this work has the potential to contribute meaningfully to the debate on whether BBS is a biophysically realistic model of feature-binding in visual cortex.
Weaknesses:
I have several concerns regarding the presented claims, assessment of meaning and size of the presented effects, particularly with regard to the absence of a priori defined effect sizes.
Firstly, the paper makes strong claims about the frequency-specificity (i.e., gamma synchrony) and anatomical correlates (early visual cortex) of the observed effects. These claims are informed by previous electrophysiological work in non-human primates but are not directly supported by the paper itself. For instance, the title contains the word "gamma synchrony", but the authors do not demonstrate any EEG/MEG or intracranial data in from their human subjects supporting such claims, nor do they demonstrate that the frequencies in the oscillator model are within the gamma band. I think that the paper should more clearly distinguish between statements that are directly supported by the paper (such as: "an oscillator model based on BBS principles accounts for variance in human behavior") and abstract inferences based on the literature (such as "these effects could be attributed to gamma oscillations in early visual cortex, as the model was designed based on those principles").
Secondly, unlike the human participants, the model strictly does not perform figure-ground segregation, as it only receives the figure as an input. Finally, it is unclear what effect sizes the authors would have expected a priori, making it difficult to assess whether their oscillator model represents the data well or poorly. I consider this a major concern, as the relationship between the synchrony of the oscillatory model and the performance of the human participants is confounded by the visual features of the figure. Specifically, the authors use the BBS literature to motivate the hypothesis that perception of the texture-defined figure is related to the density and contrast heterogeneity of the texture elements (gabor annuli) of the figure. This hypothesis has to be true regardless of synchrony, as the figure will be easier to spot if it consists of a higher number of high-contrast gabors than the background. As the frequency and phase of the oscillators and coupling strength between oscillators in the grid change as a function of these visual features, I wonder how much of the correlation between model synchrony and human performance is mediated by the features of the figure. To interpret to what extent the similarity between model and human behavior relies on the oscillatory nature of the model, the authors should find a way to estimate an empirical threshold that accounts for these confounding effects. Alternatively, it would be interesting to understand whether a model based on competing theories (e.g., Binding by Enhanced Firing, Roelfsema, 2023) would perform better or worse at explaining the data.
Reviewer #2 (Public review):
The authors aimed to investigate whether gamma synchrony serves a functional role in figure-ground perception. They specifically sought to test whether the stimulus-dependence of gamma synchrony, often considered a limitation, actually facilitates perceptual grouping. Using the theory of weakly coupled oscillators (TWCO), they developed a framework wherein synchronization depends on both frequency detuning (related to contrast heterogeneity) and coupling strength (related to proximity between visual elements). Through psychophysical experiments with texture discrimination tasks and computational modeling, they tested whether human performance follows patterns predicted by TWCO and whether perceptual learning enhances synchrony-based grouping.
Strengths:
(1) The theoretical framework connecting TWCO to visual perception is innovative and well-articulated, providing a potential mechanistic explanation for how gamma synchrony might contribute to both feature binding and separation.
(2) The methodology combines psychophysical measurements with computational modeling, with a solid quantitative agreement between model predictions and human performance.
(3) In particular, the demonstration that coupling strengths can be modified through experience is remarkable and suggests gamma synchrony could be an adaptable mechanism that improves with visual learning.
(4) The cross-validation approach, wherein model parameters derived from macaque neurophysiology successfully predict human performance, strengthens the biological plausibility of the framework.
Weaknesses:
(1) The highly controlled stimuli are far removed from natural scenes, raising questions about generalisability. But, of course, control (almost) excludes ecological validity. The study does not address the challenges of natural vision or leverage the rich statistical structure afforded by natural scenes.
(2) The experimental design appears primarily confirmatory rather than attempting to challenge the TWCO framework or test boundary conditions where it might fail.
(3) Alternative explanations for the observed behavioral effects are not thoroughly explored. While the model provides a good fit to the data, this does not conclusively prove that gamma synchrony is the actual mechanism underlying the observed effects.
(4) Direct neurophysiological evidence linking the observed behavioral effects to gamma synchrony in humans is absent, creating a gap between the model and the neural mechanism.
Achievement of Aims and Support for Conclusions:
The authors largely achieved their primary aim of demonstrating that human figure-ground perception follows patterns predicted by TWCO principles. Their psychophysical results reveal a behavioral "Arnold tongue" that matches the synchronization patterns predicted by their model, and their learning experiment shows that perceptual improvements correlate with predicted increases in synchrony.
The evidence supports their conclusion that gamma synchrony could serve as a viable neural grouping mechanism for figure-ground segregation. However, the conclusion that "stimulus-dependence of gamma synchrony is adaptable to the statistics of visual experiences" is only partially supported, as the study uses highly controlled artificial stimuli rather than naturalistic visual statistics, or shows a sensitivity to the structure of experience.
Likely Impact and Utility:
This work offers a fresh perspective on the functional role of gamma oscillations in visual perception. The integration of TWCO with perceptual learning provides a novel theoretical framework that could influence future research on neural synchrony.
The computational model, with parameters derived from neurophysiological data, offers a useful tool for predicting perceptual performance based on synchronization principles. This approach might be extended to study other perceptual phenomena and could inspire designs for artificial vision systems.
The learning component of the study may have a particular impact, as it suggests a mechanism by which perceptual expertise develops through modified coupling between neural assemblies. This could influence thinking about perceptual learning more broadly, but also raises questions about the underlying mechanism that the paper does not address.
Additional Context:
Historically, the functional significance of gamma oscillations has been debated, with early theories of temporal binding giving way to skepticism based on gamma's stimulus-dependence. This study reframes this debate by suggesting that stimulus-dependence is exactly what makes gamma useful for perceptual grouping.
The successful combination of computational neuroscience and psychophysics is a significant strength of this study.
The field would benefit from future work extending (if possible) these findings to more naturalistic stimuli and directly measuring neural activity during perceptual tasks. Additionally, studies comparing predictions from synchrony-based models against alternative mechanisms would help establish the specificity of the proposed framework.