Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDavid KramerMichigan State University, East Lansing, United States of America
- Senior EditorFelix CampeloInstitute of Photonic Sciences, Barcelona, Spain
Reviewer #1 (Public review):
Summary:
In this study, authors utilized in situ cryo-electron tomography (cryo-ET) to uncover the native thylakoid architecture of spinach chloroplasts and mapped the molecular organization of these thylakoids with single-molecule resolution. The obtained images show the detailed ultrastructural features of grana membranes and highlight interactions between thylakoids and plastoglobules. Interestingly, despite the distinct three-dimensional architecture of vascular plant thylakoids, their molecular organization closely resembles that of green algae. The pronounced lateral segregation of PSII and PSI was observed at the interface between appressed and non-appressed thylakoid regions, without evidence of a specialized grana margin zone where these complexes might intermix. Furthermore, unlike isolated thylakoid membranes, photosystem II (PSII) did not form a semi-crystalline array and distributed uniformly within the membrane plane and across stacked grana membranes in intact chloroplasts. Based on the above observations, the authors propose a simplified two-domain model for the molecular organization of thylakoid membranes that can apply to both green algae and vascular plants. This study suggests that the general understanding of the functional separation of thylakoid membranes in vascular plants should be reconsidered.
Strengths:
By employing and refining AI-driven computational tools for the automated segmentation of membranes and identification of membrane proteins, this study successfully quantifies the spatial organization of photosynthetic complexes both within individual thylakoid membranes and across neighboring stacked membranes.
Weaknesses:
This study's weakness is that it requires the use of chloroplasts isolated from leaves and the need to freeze them on a grid for observation, so it is unclear to what extent the observations reflect physiological conditions. In particular, the mode of existence of the thylakoid membrane complexes seems to be strongly influenced by the physicochemical environment surrounding the membranes, as indicated by the different distribution of PSII between intact chloroplasts and those with ruptured envelope membranes.
Reviewer #2 (Public review):
Summary:
For decades, the macromolecular organization of photosynthetic complexes within the thylakoids of higher plant chloroplasts has been a topic of significant debate. Using focused ion beam milling, cryo-electron tomography, and advanced AI-based image analysis, the authors compellingly demonstrate that the macromolecular organization in spinach thylakoids closely mirrors the patterns observed in their earlier research on Chlamydomonas reinhardtii. Their findings provide strong evidence challenging long-standing assumptions about the existence of a 'grana margin'-a region at the interface between grana and stroma lamellae domains that was thought to contain intermixed particles from both areas. Instead, the study establishes that this mixed zone is absent and reveals a distinct, well-defined boundary between the grana and stroma lamellae.
Strengths:
By situating high-resolution structural data within the broader cellular context, this work contributes valuable insights into the molecular mechanisms governing the spatial organization of photosynthetic complexes within thylakoid membranes.