Fitness drivers of division of labor in vertebrates

  1. Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Sergio Rasmann
    University of Neuchâtel, Neuchâtel, Switzerland
  • Senior Editor
    Sergio Rasmann
    University of Neuchâtel, Neuchâtel, Switzerland

Reviewer #1 (Public review):

This paper presents a computational model of the evolution of two different kinds of helping ("work," presumably denoting provisioning, and defense tasks) in a model inspired by cooperatively breeding vertebrates. The helpers in this model are a mix of previous offspring of the breeder and floaters that might have joined the group, and can either transition between the tasks as they age or not. The two types of help have differential costs: "work" reduces "dominance value," (DV), a measure of competitiveness for breeding spots, which otherwise goes up linearly with age, but defense reduces survival probability. Both eventually might preclude the helper from becoming a breeder and reproducing. How much the helpers help, and which tasks (and whether they transition or not), as well as their propensity to disperse, are all evolving quantities. The authors consider three main scenarios: one where relatedness emerges from the model, but there is no benefit to living in groups, one where there is no relatedness, but living in larger groups gives a survival benefit (group augmentation, GA), and one where both effects operate. The main claim is that evolving defensive help or division of labor requires the group augmentation; it doesn't evolve through kin selection alone in the authors' simulations.

This is an interesting model, and there is much to like about the complexity that is built in. Individual-based simulations like this can be a valuable tool to explore the complex interaction of life history and social traits. Yet, models like this also have to take care of both being very clear on their construction and exploring how some of the ancillary but potentially consequential assumptions affect the results, including robust exploration of the parameter space. I think the current manuscript falls short in these areas, and therefore, I am not yet convinced of the results. Much of this is a matter of clearer and more complete writing: the Materials and Methods section in particular is incomplete or vague in some important junctions. However, there are also some issues with the assumptions that are described clearly.

Below, I describe my main issues, mostly having to do with model features that are unclear, poorly motivated (as they stand), or potentially unrealistic or underexplored.

One of the main issues I have is that there is almost no information on what happens to dispersers in the model. Line 369-67 states dispersers might join another group or remain as floaters, but gives no further information on how this is determined. Poring through the notation table also comes up empty as there is no apparent parameter affecting this consequential life history event. At some point, I convinced myself that dispersers remain floaters until they die or become breeders, but several points in the text contradict this directly (e.g., l 107). Clearly this is a hugely important model feature since it determines fitness cost and benefits of dispersal and group size (which also affects relatedness and/or fitness depending on the model). There just isn't enough information to understand this crucial component of the model, and without it, it is hard to make sense of the model output.

Related to that, it seems to be implied (but never stated explicitly) that floaters do no work, and therefore their DV increases linearly with age (H_work in eq.2 is zero). That means any floaters that manage to stick around long enough would have higher success in competition for breeding spots relative to existing group members. How realistic is this? I think this might be driving the kin selection-only results that defense doesn't evolve without group augmentation (one of the two main ways). Any subordinates (which are mainly zero in the no GA, according to the SI tables; this assumes N=breeder+subordinates, but this isn't explicit anywhere) would be outcompeted by floaters after a short time (since they evolve high H and floaters don't), which in turn increases the benefit of dispersal, explaining why it is so high. Is this parameter regime reasonable? My understanding is that floaters often aren't usually high resource holding potential individuals (either b/c high RHP ones would get selected out of the floater population by establishing territories or b/c floating isn't typically a thriving strategy, given that many resources are tied to territories). In this case, the assumption seems to bias things towards the floaters and against subordinates to inherit territories. This should be explored either with a higher mortality rate for floaters and/or a lower DV increase, or both.

When it comes to floaters replacing dead breeders, the authors say a bit more, but again, the actual equation for the scramble competition (which only appears as "scramble context" in the notation table) is not given. Is it simply proportional to R_i/\sum_j R_j ? Or is there some other function used? What are the actual numbers of floaters per breeding territory that emerge under different parameter values? These are all very important quantities that have to be described clearly.

I also think the asexual reproduction with small mutations assumption is a fairly strong one that also seems to bias the model outcomes in a particular way. I appreciate that the authors actually measured relatedness within groups (though if most groups under KS have no subordinates, that relatedness becomes a bit moot), and also eliminated it with their ingenious swapping-out-subordinates procedure. The fact remains that unless they eliminate relatedness completely, average relatedness, by design, will be very high. (Again, this is also affected by how the fate of the dispersers is determined, but clearly there isn't a lot of joining happening, just judging from mean group sizes under KS only.) This is, of course, why there is so much helping evolving (even if it's not defensive) unless they completely cut out relatedness.

Finally, the "need for division of labor" section is also unclear, and its construction also would seem to bias things against division of labor evolving. For starters, I don't understand the rationale for the convoluted way the authors create an incentive for division of labor. Why not implement something much simpler, like a law of minimum (i.e., the total effect of helping is whatever the help amount for the lowest value task is) or more intuitively: the fecundity is simply a function of "work" help (draw Poisson number of offspring) and survival of offspring (draw binomial from the fecundity) is a function of the "defense" help. As it is, even though the authors say they require division of labor, in fact, they only make a single type of help marginally less beneficial (basically by half) if it is done more than the other. That's a fairly weak selection for division of labor, and to me it seems hard to justify. I suspect either of the alternative assumptions above would actually impose enough selection to make division of labor evolve even without group augmentation.

Overall, this is an interesting model, but the simulation is not adequately described or explored to have confidence in the main conclusions yet. Better exposition and more exploration of alternative assumptions and parameter space are needed.

Reviewer #2 (Public review):

Summary:

This paper formulates an individual-based model to understand the evolution of division of labor in vertebrates. A main conclusion of the paper is that direct fitness benefits are the primary factor causing the evolution of vertebrate division of labor, rather than indirect fitness benefits.

Strengths:

The paper formulates an individual-based model that is inspired by vertebrate life history. The model incorporates numerous biologically realistic details, including the possibility to evolve age polytheism where individuals switch from work to defence tasks as they age or vice versa, as well as the possibility of comparing the action of group augmentation alone with that of kin selection alone.

Weaknesses:

The model makes assumptions that restrict the possibility that kin selection leads to the evolution of helping. In particular, the model assumes that in the absence of group augmentation, subordinates can only help breeders but cannot help non-breeders or increase the survival of breeders, whereas with group augmentation, subordinates can help both breeders and non-breeders and increase the survival of breeders. This is unrealistic as subordinates in real organisms can help other subordinates and increase the survival of non-breeders, even in the absence of group augmentation, for instance, with targeted helping to dominants or allies. This restriction artificially limits the ability of kin selection alone to lead to the evolution of helping, and potentially to division of labor. Hence, the conclusion that group augmentation is the primary driving factor driving vertebrate division of labor appears forced by the imposed restrictions on kin selection. The model used is also quite particular, and so the claimed generality across vertebrates is not warranted.

I describe some suggestions for improving the paper below, more or less in the paper's order.

First, the introduction goes to great lengths trying to convince the reader that this model is the first in this or another way, particularly in being only for vertebrates, as illustrated in the abstract where it is stated that "we lack a theoretical framework to explore the conditions under which division of labor is likely to evolve" (line 13). However, this is a risky and unnecessary motivation. There are many models of division of labor and some of them are likely to be abstract enough to apply to vertebrates even if they are not tailored to vertebrates, so the claims for being first are not only likely to be wrong but will put many readers in an antagonistic position right from the start, which will make it harder to communicate the results. Instead of claiming to be the first or that there is a lack of theoretical frameworks for vertebrate division of labor, I think it is enough and sufficiently interesting to say that the paper formulates an individual-based model motivated by the life history of vertebrates to understand the evolution of vertebrate division of labor. You could then describe the life history properties that the model incorporates (subordinates can become reproductive, low relatedness, age polyethism, etc.) without saying this has never been done or that it is exclusive to vertebrates; indeed, the paper states that these features do not occur in eusocial insects, which is surprising as some "primitively" eusocial insects show them. So, in short, I think the introduction should be extensively revised to avoid claims of being the first and to make it focused on the question being addressed and how it is addressed. I think this could be done in 2-3 paragraphs without the rather extensive review of the literature in the current introduction.

Second, the description of the model and results should be clarified substantially. I will give specific suggestions later, but for now, I will just say that it is unclear what the figures show. First, it is unclear what the axes in Figure 2 show, particularly for the vertical one. According to the text in the figure axis, it presumably refers to T, but T is a function of age t, so it is unclear what is being plotted. The legend explaining the triangle and circle symbols is unintelligible (lines 227-230), so again it is unclear what is being plotted; part of the reason for this unintelligibility is that the procedure that presumably underlies it (section starting on line 493) is poorly explained and not understandable (I detail why below). Second, the axes in Figure 3 are similarly unclear. The text in the vertical axis in panel A suggests this is T, however, T is a function of t and gamma_t, so something else must be being done to plot this. Similarly, in panel B, the horizontal axis is presumably R, but R is a function of t and of the helping genotype, so again some explanation is lacking. In all figures, the symbol of what is being plotted should be included.

Third, the conclusions sound stronger than the results are. A main conclusion of the paper is that "kin selection alone is unlikely to select for the evolution of defensive tasks and division of labor in vertebrates" (lines 194-195). This conclusion is drawn from the left column in Figure 2, where only kin selection is at play, and the helping that evolves only involves work rather than defense tasks. This conclusion follows because the model assumes that without group augmentation (i.e., xn=0, the kin selection scenario), subordinates can only help breeders to reproduce but cannot help breeders or other subordinates to survive, so the only form of help that evolves is the least costly, not the most beneficial as there is no difference in the benefits given among forms of helping. This assumption is unrealistic, particularly for vertebrates where subordinates can help other group members survive even in the absence of group augmentation (e.g., with targeted help to certain group members, because of dominance hierarchies where the helping would go to the breeder, or because of alliances where the helping would go to other subordinates). I go into further details below, but in short, the model forces a narrow scope for the kin selection scenario, and then the paper concludes that kin selection alone is unlikely to be of relevance for the evolution of vertebrate division of labor. This conclusion is particular to the model used, and it is misleading to suggest that this is a general feature of such a particular model.

Overall, I think the paper should be revised extensively to clarify its aims, model, results, and scope of its conclusions.

Author response:

We will revise the statements of novelty in the introduction by more clearly emphasizing how our model addresses gaps in the existing literature. In addition, we will clarify the description of the dispersal process. Briefly, we use the same dispersal gene β to represent the likelihood an individual will either leave or join a group, thereby quantifying both dispersal and immigration using the same parameter. Specifically, individuals with higher β are more likely to remain as floaters (i.e., disperse from their natal group to become a breeder elsewhere), whereas those with lower β are either more likely to remain in their natal group as subordinates (i.e., queue in a group for the breeding position) or join another group if they dispersed. Immigrants that join a group as a subordinate help and queue for a breeding position, as does any natal subordinate born into the group. To follow the suggestion of the referee and more fully explore the impact of competition between subordinates born in the group and subordinate immigrants, we will explore extending our model to allow dispersers to leave their natal group and join another as subordinates, by incorporating a reaction norm based on their age or rank (D = 1 / (1 + exp (βt * t – β0)) . This approach will allow individuals to adjust also their dispersal strategy to their competitiveness and to avoid kin competition by remaining as a subordinate in another group.

We apologize that there was some confusion with terminology. We use the term “disperser” to describe individuals that disperse from their natal group. Dispersers can assume one of three roles: (1) they can migrate to another group as "subordinates"; (2) they can join another group as "breeders" if they successfully outcompete other candidates; or (3) they can remain as "floaters" if they fail to join a group. "Floaters" are individuals who persist in a transient state without access to a breeding territory, waiting for opportunities to join a group in an established territory. Therefore, dispersers do not work when they are floaters, but they may later help if they immigrate to a group as a subordinate. Consequently, immigrant subordinates have no inherent competitive advantage over natal subordinates (as step 2.2. “Join a group” is followed by step 3. “Help”, which occurs before step 5. “Become a breeder”). Nevertheless, floaters can potentially outcompete subordinates of the same age if they attempt to breed without first queuing as a subordinate (step 5) when subordinates are engaged in work tasks. We believe that this assumption is realistic and constitutes part of the costs associated with work tasks. However, floaters are at a disadvantage for becoming a breeder because: (1) floaters incur higher mortality than individuals within groups (eq. 3); and (2) floaters may only attempt to become breeders in some breeding cycles (versus subordinate groups members, who are automatically candidates for an open breeding position in the group in each cycle). Therefore, due to their higher mortality, floaters are rarely older than individuals within groups, which heavily influences dominance value and competitiveness. Additionally, any competitive advantage that floaters might have over other subordinate group members is unlikely to drive the kin selection-only results because subordinates would preferably choose defense tasks instead of work tasks so as not to be at a competitive disadvantage compared to floaters.

We note that reviewers also mention that floaters often aren't usually high resource holding potential (RHP) individuals and, therefore, our assumptions might be unrealistic. As we explain above, floaters are not inherently at a competitive advantage in our model. In any case, empirical work in a number of species has shown that dispersers are not necessarily those of lower RHP or of lower quality. In fact, according to the ecological constraints hypothesis, one might predict that high quality individuals are the ones that disperse because only individuals in good condition (e.g., larger body size, better energy reserves) can afford the costs associated with dispersal (Cote et al., 2022). By adding a reaction norm approach to explore the role of age or rank in the revised version, we can also determine whether higher or lower quality individuals are the ones dispersing. We will address the issues of terminology and clarity of the relative competitive advantage of floaters versus subordinates, and also include more information in the Supplementary Tables (e.g., the number of floaters). As a side note, the “scramble context” we mention was an additional implementation that we decided to remove from the final manuscript, but we forgot to remove from Table 1 before submission.

The reviewers also raised a question about asexual reproduction and relatedness more generally. As we showed in the Supplementary Tables and the section on relatedness in the SI (“Kin selection and the evolution of division of labor"), high relatedness does not appear to explain our results. In evolutionary biology generally and in game theory specifically (with the exception of models on sexual selection or sex-specific traits), asexual reproduction is often modelled because it reduces unnecessary complexity. To further study the effect of relatedness on kin structures more closely resembling those of vertebrates, however, we will create an additional “relatedness structure level”, where we will shuffle half of the philopatric offspring using the same method used to remove relatedness completely. This approach will effectively reduce relatedness structure by half and overcome the concerns with our decision to model asexual reproduction.

Briefly, we will elaborate on the concept of division of labor and the tasks that cooperative breeders perform. In nature, multiple tasks are often necessary to successfully rear offspring. For example, in many cooperatively breeding birds, the primary reasons that individuals fail to produce offspring are (1) starvation, which is mitigated by the feeding of offspring, and (2) nest depredation, which is countered by defensive behavior. Consequently, both types of tasks are necessary to successfully produce offspring, and focusing solely on one while neglecting the other is likely to result in lower reproductive success than if both tasks are performed by individuals within the group. We simplify this principle in the model by maximizing reproductive output when both tasks are carried out to a similar extent, allowing for some flexibility from the mean. In response to the reviewer suggestion about making fecundity a function of work tasks and offspring survival as a function of defensive tasks, these are actually equivalent in model terms, as it’s the same whether breeders produce three offspring and two die, or if they only produce one. This represents, of course, a simplification of the natural context, where breeding unsuccessfully is more costly (in terms of time and energy investment) than not breeding at all, but this is approach is typically used in models of this sort.

The scope of this paper was to study division of labor in cooperatively breeding species with fertile workers, in which help is exclusively directed towards breeders to enhance offspring production (i.e., alloparental care). Our focus is in line with previous work in most other social animals, including eusocial insects and humans, which emphasizes how division of labor maximizes group productivity. Other forms of “general” help are not considered in the paper, and such forms of help are rarely considered in cooperatively breeding vertebrates or in the division of labor literature, as they do not result in task partitioning to enhance productivity.

How do we model help? Help provided is an interaction between H (total effort) and T (proportion of total effort invested in each type of task). We will make this definition clearer in the revised manuscript. Thank you for pointing out an error in Eq. 1. This inequality was indeed written incorrectly in the paper (but is correct in the model code); it is dominance rank instead of age (see code in Individual.cpp lines 99-119). We will correct this mistake in the revision.

There was also a question about bounded and unbounded helping costs. The difference in costs is inherent to the nature of the different task (work or defense): while survival is naturally bounded, with death as the lower bound, dominance costs are potentially unbounded, as they are influenced by dynamic social contexts and potential competitors. Therefore, we believe that the model’s cost structure is not too different to that in nature.

Thank you for your comments about the parameter landscape. It is important to point out that variations in the mutation rate do not qualitatively affect our results, as this is something we explored in previous versions of the model (not shown). Briefly, we find that variations in the mutation rates only alter the time required to reach equilibrium. Increasing the step size of mutation diminishes the strength of selection by adding stochasticity and reducing the genetic correlation between offspring and their parents. Population size could, in theory, affect our results, as small populations are more prone to extinction. Since this was not something we planned to explore in the paper directly, we specifically chose a large population size, or better said, a large number of territories (i.e. 5000) that can potentially host a large population.

During the exploratory phase of the model development, various parameters and values were also assessed. However, the manuscript only details the ranges of values and parameters where changes in the behaviors of interest were observed, enhancing clarity and conciseness. For instance, variation in yh (the cost of help on dominance when performing “work tasks”) led to behavioral changes similar to those caused by changes in xh (the cost of help in survival when performing “defensive tasks”), as both are proportional to each other. Specifically, since an increase in defense costs raises the proportion of work relative to defense tasks, while an increase in the costs of work task has the opposite effect, only results for the variation of xh were included in the manuscript to avoid redundancy. We will make this clearer in the revision.

Finally, following the advice from the reviewers, we will add the symbols of the variables to the figure axes, and clarify whether the values shown represent a genetic or phenotypic trait. In Figure 2, the x-axis is H and the y-axis is T. In Figure 3A, the subindex t in x-axis is incorrect; it should be subindex R (reaction norm to dominance rank instead of age), the y-axis is T. In Figure 3B, the x-axis is R, and the y-axis is T. All values of T, H and R are phenotypic expressed values (see Table 1). For instance, T values are the phenotypic expressed values from the individuals in the population according to their genetic gamma values and their current dominance rank at a given time point.

References

Cote, J., Dahirel, M., Schtickzelle, N., Altermatt, F., Ansart, A., Blanchet, S., Chaine, A. S., De Laender, F., De Raedt, J., & Haegeman, B. (2022). Dispersal syndromes in challenging environments: A cross‐species experiment. Ecology Letters, 25(12), 2675–2687.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation