Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMichelle AntoineNational Institute on Alcohol Abuse and Alcoholism, Bethesda, United States of America
- Senior EditorLu ChenStanford University, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
It is well known that neurons in the medial prefrontal cortex (mPFC) are involved in higher cognitive functions such as executive planning, motivational processing, and internal state-mediated decision-making. These internal states often correlate with the emotional states of the brain. While several studies point to the role of mPFC in regulating behavior based on such emotional states, the diversity of information processing in its sub-populations remains a less explored territory. In this study, the authors try to address this gap by identifying and characterizing some of these sub-populations in mice using a combination of projection-specific imaging, function-based tagging of neurons, multiple behavioral assays, and ex-vivo patch clamp recordings.
Strengths:
The authors targeted mPFC projections to the nucleus accumbens (NAc) and basolateral amygdala (BLA). Using the open field task (OFT), the authors identified four relevant behavioral states as well as neurons active while the animal was in the center region ("center-ON neurons"). By characterizing single-unit activity and using dimensionality reduction, the authors show differentiated coding of behavioral events at both the projection and functional levels. They further substantiate this effect by showing higher sensitivity of mPFC-BLA center-ON neurons during time spent in the open arms of the elevated plus maze (EPM). The authors then pivoted to the three-chamber social interaction (SI) assay to show the different subsets of neurons encode preference for social stimulus over non-social. This reveals an interesting diversity in the function of these sub-populations on multiple levels. Lastly, the authors used the tube test as a manipulation of the anxiety state of mice and compared behavioral differences before/after the OFT and social interaction tasks. This experiment revealed that "losers" of the tube test spend less time in the center of the open field while "winners" show a stronger preference for the familiar mouse over the object. Using patch-clamp experiments, the authors also found that "winners" exhibit stronger synaptic transmission in the mPFC-NAc projection while "losers" exhibit stronger synaptic transmission in the mPFC-BLA projection. Given the popularity of the tube test assay in rank determination, this provides useful insights into possible effects on anxiety levels and synaptic plasticity. Overall, the many experiments performed by the authors reveal interesting differences in mPFC neurons relative to their involvement in high or low anxiety behaviors, social preference, and social rank.
Weaknesses:
The authors focused primarily on female mice without commenting on the effect that sex differences would have on their results. While the authors have identified relevant behavioral states across the various behavioral tasks, there is still a missing link between them and "emotional states" - the phrase used by them emphatically throughout the manuscript. The authors have neither provided adequate references to satisfy this gap nor shared any data pertaining to relevant readouts such as cortisol levels. Both the projection-specific recordings and patch-clamp experiments, including histology reports in the manuscript, would provide essential information for anyone trying to replicate the results, especially since it's known that sub-populations in the BLA and NAc can have vastly different functions. The population-level analysis in the manuscript requires more rigor to reduce bias and statistical controls for establishing the significance of their results. Lastly, the tube test is used as a manipulation of the "emotional state" in several of the experiments. While the tube test can cause a temporary spike in anxiety of the participating mice, it is not known to produce a sustained effect - unless there are additional interventions such as forced social defeat. Thus, additional controls for these experiments are essential to support claims based on changes in the emotional state of mice. Apart from the methodology, the manuscript could also be improved with the addition of clear scatter points in all the plots along with detailed measures of the statistical tests such as exact p values and size of groups being compared.
Reviewer #2 (Public review):
Summary:
The goal of this proposal was to understand how two separate projection neurons from the medial prefrontal cortex, those innervating the basolateral amygdala (BLA ) and nucleus accumbens (NAc), contribute to the encoding of emotional behaviors. The authors record the activity of these different neuron classes across three different behavioral environments. They propose that, although both populations are involved in emotional behavior, the two populations have diverging activity patterns in certain contexts. A subset of projections to the NAc appears particularly important for social behavior. They then attempt to link these changes to the emotional state of the animal and changes in synaptic connectivity.
Strengths:
The behavioral data builds on previous studies of these projection neurons supporting distinct roles in behavior and extend upon previous work by looking at the heterogeneity within different projection neurons across contexts.
Weaknesses:
The diversity of neurons mediating these projections and their targeting within the BLA and NAc is not explored. These are not homogeneous structures and so one possibility is that some of the diversity within their findings may relate to targeting of different sub-structures within each region. The electrophysiological data have significant experimental confounds and more methodological information is required to support other conclusions related to these data.
Reviewer #3 (Public review):
Summary:
This manuscript investigates the distinct contributions of mPFC→BLA and mPFC→NAc pathways in emotional regulation, with implications for understanding anxiety, exploration, and social preference behaviors. Using Ca2+ imaging, optogenetics, and patch-clamp recording, the authors demonstrate pathway-specific roles in encoding emotional states of opposite valence. They further identify subsets of neurons ("center-ON") with heightened activity under anxiety-inducing conditions. These findings challenge the traditional view of functional similarity between these pathways and provide valuable insights into neural circuit dynamics relevant to emotional disorders.
The study is well-designed and addresses an important topic, but several methodological and interpretational issues require clarification to strengthen the conclusions.
Weaknesses:
Major Weaknesses:
(1) The manuscript does not clearly and consistently specify the sex of the mice used for behavioral and imaging experiments. Given the known influence of sex on emotional behaviors and neural activity, this omission raises concerns about the generalizability of the findings. The authors should make clear throughout the manuscript whether male, female, or mixed-sex cohorts were used and provide a rationale for their choice. If only one sex was used, the potential limitations of this approach should be explicitly discussed.
(2) Mice lacking "center-ON" neurons were excluded from analysis, yet the manuscript draws broad conclusions about the encoding of emotional states by mPFC pathways. It is critical to justify this exclusion and discuss how it may limit the generalizability of the findings. The inclusion of data or contextualization for animals without center-ON neurons would strengthen the interpretation.
(3) The manuscript lacks baseline activity comparisons for mPFC→BLA and mPFC→NAc pathways across subjects. Providing baseline data would contextualize the observed activity changes during behavior testing and help rule out inter-individual variability as a confounding factor.
(4) Extensive behavioral testing across multiple paradigms may introduce stress and fatigue in the animals, which could confound the induction of emotional states. The authors should describe the measures taken to minimize these effects (e.g., recovery periods, randomized testing order) and discuss their potential impact on the results.
(5) Grooming is described as a "non-anxiety" behavior, which conflicts with its established role as a stress-relieving behavior that may indicate anxiety. This discrepancy requires clarification, as the distinction is central to the conclusions about the mPFC→BLA pathway's role in differentiating anxiety-related and non-anxiety behaviors.
(6) While the study highlights pathway-specific neural activity, it lacks a cohesive integration of these findings with the behavioral data. Quantifying the overlap or decorrelation of neuronal activity patterns across tasks would solidify claims about the specialization of mPFC→NAc and mPFC→BLA pathways. Likewise, the discussion should be expanded to place these findings in light of prior studies that have probed the roles of these pathways in social/emotion/valence-related behaviors.
Minor Weaknesses:
(1) The manuscript does not explicitly state whether the same mice were used across all behavioral assays. This information is critical for evaluating the validity of group comparisons. Additionally, more detail on sample sizes per assay would improve the manuscript's transparency.
(2) In Figure 2G, the difference between BLA and NAc activity during exploratory behaviors (sniffing) is difficult to discern. Adjusting the scale or reformatting the figure would better illustrate the findings.
(3) While the characteristics of the first social stimulus (M1) are specified, there is no information about the second social stimulus (M2). This omission makes it difficult to fully interpret the findings from the three-chamber test.
(4) The methods section lacks detailed information about statistical approaches and animal selection criteria. Explicitly outlining these procedures would improve reproducibility and clarity.