The Drosophila EGF domain protein Uninflatable sets the switch between wrapping glia growth and axon wrapping instructed by Notch

  1. Institut für Neuro- und Verhaltensbiologie, Münster, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Margaret Ho
    National Yang Ming Chiao Tung University, Taipei, Taiwan
  • Senior Editor
    Claude Desplan
    New York University, New York, United States of America

Reviewer #1 (Public review):

Summary:

A central function of glial cells is the ensheathment of axons. Wrapping of larger-diameter axons involves myelin-forming glial classes (such as oligodendrocytes), whereas smaller axons are covered by non-myelin-forming glial processes (such as olfactory ensheathing glia). While we have some insights into the underlying molecular mechanisms orchestrating myelination, our understanding of the signaling pathways at work in non-myelinating glia remains limited. As non-myelinating glial ensheathment of axons is highly conserved in both vertebrates and invertebrates, the nervous system of Drosophila melanogaster, and in particular the larval peripheral nerves, have emerged as a powerful model to elucidate the regulation of axon ensheathment by a class of glia called wrapping glia. Using this model, this study seeks to specifically address the question, as to which molecular mechanisms contribute to the regulation of the extent of glial ensheathment focusing on the interaction of wrapping glia with axons.

Strengths and Weaknesses:

For this purpose, the study combines state-of-the-art genetic approaches with high-resolution imaging, including classic electron microscopy. The genetic methods involve RNAi-mediated knockdown, acute Crispr-Cas9 knock-outs, and genetic epistasis approaches to manipulate gene function with the help of cell-type specific drivers. The successful use of acute Crispr-Cas9 mediated knockout tools (which required the generation of new genetic reagents for this study) will be of general interest to the Drosophila community.

The authors set out to identify new molecular determinants mediating the extent of axon wrapping in the peripheral nerves of third-instar wandering Drosophila larvae. They could show that over-expressing a constitutive-active version of the Fibroblast growth factor receptor Heartless (Htl) causes an increase in wrapping glial branching, leading to the formation of swellings in nerves close to the cell body (named bulges). To identify new determinants involved in axon wrapping acting downstream of Htl, the authors next conducted an impressive large-scale genetic interaction screen (which has become rare, but remains a very powerful approach), and identified Uninflatable (Uif) in this way. Uif is a large single-pass transmembrane protein that contains a whole series of extracellular domains, including Epidermal growth factor-like domains. Linking this protein to glial branch formation is novel, as it has so far been mostly studied in the context of tracheal maturation and growth. Intriguingly, a knock-down or knock-out of uif reduces branch complexity and also suppresses htl over-expression defects. Importantly, uif over-expression causes the formation of excessive membrane stacks. Together these observations are in in line with the notion that htl may act upstream of uif.

Further epistasis experiments using this model implicated also the Notch signaling pathway as a crucial regulator of glial wrapping: reduction in Notch signaling reduces wrapping, whereas over-activation of the pathway increases axonal wrapping (but does not cause the formation of bulges). Importantly, defects caused by the over-expression of uif can be suppressed by activated Notch signaling. Knock-down experiments in neurons suggest further that neither Delta nor Serrate act as neuronal ligands to activate Notch signaling in wrapping glia, whereas knock-down of Contactin, a GPI anchored Immunoglobulin domain-containing protein led to reduced axon wrapping by glia, and thus could act as an activating ligand in this context.

Based on these results the authors put forward a model proposing that Uif normally suppresses Notch signaling, and that activation of Notch by Contactin leads to suppression of Htl, to trigger the ensheathment of axons. While these are intriguing propositions, future experiments would need to conclusively address whether and how Uif could "stabilize" a specific membrane domain capable of interacting with specific axons. Moreover, to obtain evidence for Uif suppression by Notch to inhibit "precocious" axon wrapping and for a "gradual increase" of Notch signaling that silences uif and htl, (1) reporters for N and Htl signaling in larvae, (2) monitoring of different stages at a time point when branch extension begins, and (3) a reagent enabling to visualize Uif expression could be important next tools/approaches. Considering the qualitatively different phenotypes of reduced branching, compared to excessive membrane stacks close to cell bodies, it would perhaps be worthwhile to explore more deeply how membrane formation in wrapping glia is orchestrated at the subcellular level by Uif.

Finally, in light of the importance of correct ensheathment of axons by glia for neuronal function, this study will be of general interest to the glial biology community.

Reviewer #2 (Public review):

The FGF receptor Heartless has previously been implicated in Drosophila peripheral glial growth and axonal wrapping. Here, the authors perform a large-scale screen of over 2600 RNAi lines to find factors that control the downstream signaling in this process. They identify a transmembrane protein Uninflatable to be necessary for the formation of plasma membrane domains. They further find that a Uif regulatory target, Notch, is necessary for glial wrapping. Interestingly, additional evidence suggests Notch itself regulates uif and htl, suggesting a feedback system. Together, they propose that Uif functions as a "switch" to regulate the balance between glial growl and wrapping of axons.

Little is known about how glial cell properties are coordinated with axons, and the identification of Uif is a promising link to shed light on this orchestration. The manuscript is well-written, and the experiments are generally well-controlled. The EM studies in particular are of outstanding quality and really help to mechanistically dissect the consequences of Uif and Notch signaling in the regulation of glial processes. Together, this valuable study provides convincing evidence of a new player coordinating the interactions controlling the glial wrapping of axons.

Author response:

We are grateful to the reviewers and editors for their time and positive assessment of our manuscript. We will incorporate all their comments to further improve our work. In the revised version of the manuscript, we will provide a more detailed description of the quantification of the wrapping index and further explain the differential roles of Htl and Uif during cell growth versus the role of Notch during axon wrapping. In addition, we will perform further experiments using combinations of reporters and antibodies to further explore the relationship between Htl, Uif and Notch. The discussion will be expanded and possible mechanisms by which Uif 'stabilises' a specific membrane domain will be included.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation