Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorVolker DötschGoethe University Frankfurt, Frankfurt am Main, Germany
- Senior EditorVolker DötschGoethe University Frankfurt, Frankfurt am Main, Germany
Reviewer #1 (Public review):
Summary:
In this manuscript, Paturi et.al. presents a detailed structural and mechanistic study of the DRB7.2:DRB4 complex in plants, focusing on its role in sequestering endogenous inverted-repeat dsRNA precursors and inhibiting Dicer-like protein 3 (DCL3) activity. By truncating the two proteins, they systematically identify the domains involved in direct interaction between DRB7.2 and DRB4 and study the interactions between the two using biophysical techniques (ITC and NMR). They show using NMR that the interacting domains between the two proteins are likely partially unfolded or aggregated in the absence of the binding partner and determining the NMR structure of the individual interacting domains in the presence of the isotopically unlabelled partner using sparse restrain data combined with Rosetta. They also determine the complex structure of the interacting DRB7.2 dsRBD domain and the DRB4 D3 domain using X-ray crystallography.
Strengths:
Overall, the manuscript is well written, provides molecular details at high resolution between the interaction of DRB7.2 and DRB4 and the data in the manuscript strongly supports the proposed model where DRB7.2:DRB4 complex sequesters the DCL3 substrates inhibiting its function of producing epigenetically activated siRNAs.
Weaknesses:
Major comments:
(1) The manuscript unfortunately completely lacks functional validation of the determined DRB7.2:DRB4 complex structure which is required for the rigorous validation of the proposed model. For functional validation of the determined structures, the author should at least present the mutational analysis (impact on complex formation, RNA affinity) of the point mutants derived from the structure of the DRB7.2:DRB4 complex.
(2) The proposed model shows the DRB7.2M and DRB4D3 as partially folded/aggregated proteins in the absence of the complex, understandably from the presented NMR data of the individual domains. However, in the cellular context, when the RNAs are present, especially DRB7.2M might be properly folded/not aggregated. Could the authors support or negate this by showing the 15N HSQC spectrum of DRB7.2M in complex with the 13 bp dsRNA?
(3) It remains unclear from the manuscript if DRB7.1 will have a similar or different mechanism of interaction with DRB4. Based on the sequence comparisons of the two proteins, the authors should comment on this in the discussion section.
Minor comments:
(1) There are no errors for the N, dH and dS values of the ITC measurements in Table 1. Also, it seems that the measurements are done only once. Values derived from at least triplicates should be presented. This would be helpful to increase confidence in the values derived from ITC especially for the titration between DRB7.2, DRB4C, and DRB4D3 as the N value there is substantially lower than 1 which does not agree with the other data.
Reviewer #2 (Public review):
Summary:
The manuscript by Paturi and colleagues uses an approach that combines structural biology and biochemistry to probe protein-protein and protein-RNA interactions for two protein factors related to the dsRNA pathway in plants.
Strengths:
A key finding in the research is the direct demonstration of the ability of the single dsRBD (double-strand RNA binding domain) of DRB7.2 to interact simultaneously with dsRNA as well as the C-terminal domain of DRB4. The heterodimerization of DRB7.2 and DRB4 is demonstrated to make a high-affinity complex with dsRNA and it is proposed that this atypical use of the dsRBD domain to bridge the protein and RNA may contribute to the ability to prevent cleavage that would otherwise occur for dsRNA. The primary results for the interactions are generally well-supported by the data, and the conclusions are taken from the available results without excessive speculation.
Weaknesses:
There is a need for some statistical repeats, as well as a suggested movement of many protein characterization findings in the solution state to support data or to better indicate how these properties could play a role in the final proposed mechanism. There is also the need for certain measurement replicates, such as for the ITC data which are derived from single measurements and lack sufficient estimates of error.