Author response:
Joint Public Review:
Summary:
In this study, Daniel et al. used three cognitive tasks to investigate behavioral signatures of cerebellar degeneration. In the first two tasks, the authors found that if an equation was incorrect, reaction times slowed significantly more for cerebellar patients than for healthy controls. In comparison, the slowing in the reaction times when the task required more operations was comparable to normal controls. In the third task, the authors show increased errors in cerebellar patients when they had to judge whether a letter string corresponded to an artificial grammar.
Strengths:
Overall, the work is methodologically sound and the manuscript well written. The data do show some evidence for specific cognitive deficits in cerebellar degeneration patients.
Thank you for the thoughtful summary and constructive feedback. We are pleased that the methodological rigor and clarity of the manuscript were appreciated, and that the data were recognized as providing meaningful evidence regarding cognitive deficits in cerebellar degeneration.
Weaknesses:
The current version has some weaknesses in the visual presentation of results. Overall, the study lacks a more precise discussion on how the patterns of deficits relate to the hypothesized cerebellar function. The reviewers and the editor agreed that the data are interesting and point to a specific cognitive deficit in cerebellar patients. However, in the discussion, we were somewhat confused about the interpretation of the result: If the cerebellum (as proposed in the introduction) is involved in forming expectations in a cognitive task, should they not show problems both in the expected (1+3 =4) and unexpected (1+3=2) conditions? Without having formed the correct expectation, how can you correctly say "yes" in the expected condition? No increase in error rate is observed - just slowing in the unexpected condition. But this increase in error rate was not observed. If the patients make up for the lack of prediction by using some other strategy, why are they only slowing in the unexpected case? If the cerebellum is NOT involved in making the prediction, but only involved in detecting the mismatch between predicted and real outcome, why would the patients not show specifically more errors in the unexpected condition?
Thank you for asking these important questions and initiating an interesting discussion. While decision errors and processing efficiency are not fully orthogonal and are likely related, they are not necessarily the same internal construct. The data from Experiments 1 and 2 suggest impaired processing efficiency rather than increased decision error. Reaction time slowing without increased error rates suggests that the CA group can form expectations but respond more slowly, possibly due to reduced processing efficiency. Thus, this analysis of our data can indicate that the cerebellum is not essential for forming expectations, but it plays a critical role in processing their violations.
Relatedly, two important questions remain open in the literature concerning the cerebellum’s role in expectation-related processes. The first is whether the cerebellum contributes to the formation of expectations or the processing of their violations. In Experiments 1 and 2, the CA group did not show impairments in the complexity manipulation. As mentioned by the editors, solving these problems requires the formation of expectations during the reasoning process. Given the intact performance of the CA group, these results suggest that they are not impaired in forming expectations. However, in both Experiments 1 and 2, patients exhibited selective impairments in solving incorrect problems compared to correct problems. Since expectation formation is required in both conditions, but only incorrect problems involve a violation of expectation (VE), we hypothesize that the cerebellum is involved in VE processes. We suggest that the CA group can form expectations in familiar tasks, but are impaired in processing unexpected compared to expected outcomes. This supports the notion that the cerebellum contributes to VE, rather than to forming expectations.
Importantly, while previous experimental manipulations(1–6) have provided important insights, some may have confounded these two internal constructs due to task design limitations (e.g., lack of baseline conditions). Notably, some of these previous studies did not include control conditions (e.g., correct trials) where there was no VE. In addition, other studies did not include a control measure (e.g., complexity effect), which limits their ability to infer the specific cerebellar role in expectation manipulation.
In addition to the editors’ question, we would like to raise a second important question regarding cerebellar contributions to expectations-related processes. While our findings point to a both unique and consistent cerebellar role in VE processes in sequential tasks, we do not aim to generalize this role to all forms of expectations(2,7,8). Another interesting process is how expectations are formed. Expectations can be formed by different processes(2,7,8), and this should be taken into account when defining cerebellar function. For instance, previous experimental paradigms(1–6), aiming to assess VE, utilized tasks that manipulated rule-based errors or probability-based errors, but did not fully dissociate these constructs. In our Experiments 1 and 2, we specifically manipulated error signals derived from previous top-down effects. However, in Experiment 3, the participant’s VE was derived from within-task processes. In Experiment 3, expectations were formed either by statistical learning or by rule-based learning. During the test stage, when evaluating sensitivity to correct and incorrect problems, the CA group showed deficits only when expectations were formed based on rules. These findings suggest that cerebellar patients may retain a general ability to form expectations. However, their deficit appears to be specific to processing rule-based VE, but not statistically derived VE. This pattern of results aligns with the results of Experiments 1 and 2 where the rules are known and based on pre-task knowledge.
We suggest that these two key questions are relevant to both motor and non-motor domains and were not fully addressed even in the previous, well-studied motor domain. Thus, the current experimental design used in three different experiments provides a valuable novel experimental perspective, allowing us to distinguish between some, but not all, of the processes involved in the formation of expectations and their violations. For instance, to our knowledge, this is the first study to demonstrate a selective impairment in rule-based VE processing in cerebellar patients across both numerical reasoning and artificial grammar tasks.
If feasible, we propose that future studies should disentangle different forms of VE by operationalizing them in experimental tasks in an orthogonal manner. This will allow us, as a scientific community, to achieve a more detailed, well-defined cerebellar motor and non-motor mechanistic account.
References
(1) Butcher, P. A. et al. The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks. J. Neurophysiol. 118, 1622–1636 (2017).
(2) Moberget, T., Gullesen, E. H., Andersson, S., Ivry, R. B. & Endestad, T. Generalized role for the cerebellum in encoding internal models: Evidence from semantic processing. J. Neurosci. 34, 2871–2878 (2014).
(3) Riva, D. The cerebellar contribution to language and sequential functions: evidence from a child with cerebellitis. Cortex. 34, 279–287 (1998).
(4) Sokolov, A. A., Miall, R. C. & Ivry, R. B. The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends Cogn. Sci. 21, 313–332 (2017).
(5) Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115 Pt 1, 155–178 (1992).
(6) Taylor, J. A., Krakauer, J. W. & Ivry, R. B. Explicit and Implicit Contributions to Learning in a Sensorimotor Adaptation Task. J. Neurosci. 34, 3023–3032 (2014).
(7) Sokolov, A. A., Miall, R. C. & Ivry, R. B. The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends Cogn. Sci. 21, 313–332 (2017).
(8) Fiez, J. A., Petersen, S. E., Cheney, M. K. & Raichle, M. E. IMPAIRED NON-MOTOR LEARNING AND ERROR DETECTION ASSOCIATED WITH CEREBELLAR DAMAGEA SINGLE CASE STUDY. Brain 115, 155–178 (1992).
(9) Picciotto, Y. De, Algon, A. L., Amit, I., Vakil, E. & Saban, W. Large-scale evidence for the validity of remote MoCA administration among people with cerebellar ataxia administration among people with cerebellar ataxia. Clin. Neuropsychol. 0, 1–17 (2024).
(10) Binoy, S., Monstaser-Kouhsari, L., Ponger, P. & Saban, W. Remote Assessment of Cognition in Parkinsons Disease and Cerebellar Ataxia: The MoCA Test in English and Hebrew. Front. Hum. Neurosci. 17, (2023).
(11) Saban, W. & Ivry, R. B. Pont: A protocol for online neuropsychological testing. J. Cogn. Neurosci. 33, 2413–2425 (2021).
(12) Algon, A. L. et al. Scale for the assessment and rating of ataxia : a live e ‑ version. J. Neurol. (2025). doi:10.1007/s00415-025-13071-7
(13) McDougle, S. D. et al. Continuous manipulation of mental representations is compromised in cerebellar degeneration. Brain 145, 4246–4263 (2022).