Author response:
eLife Assessment:
This paper performs a valuable critical reassessment of anatomical and functional data, proposing a reclassification of the mouse visual cortex in which almost all the higher visual areas are consolidated into a single area V2. However, the evidence supporting this unification is incomplete, as the key experimental observations that the model attempts to reproduce do not accurately reflect the literature . This study will likely be of interest to neuroscientists focused on the mouse visual cortex and the evolution of cortical organization.
We do not agree or understand which 'key experimental observations' that the model attempts to reproduce do not accurately reflect the literature. The model reproduces a complete map of the visual field, with overlap in certain regions. When reversals are used to delineate areas, as is the current custom, multiple higher order areas are generated, and each area has a biased and overlapping visual field coverage. These are the simple outputs of the model, and they are consistent with the published literature, including recent publications such as Garrett et al. 2014 and Zhuang et al. 2017, a paper published in this journal. The area boundaries produced by the model are not identical to area boundaries in the literature, because the model is a simplification.
Reviewer #1 (Public review):
Summary:
In this manuscript, the authors argue that defining higher visual areas (HVAs) based on reversals of retinotopic tuning has led to an over-parcellation of secondary visual cortices. Using retinotopic models, they propose that the HVAs are more parsimoniously mapped as a single area V2, which encircles V1 and exhibits complex retinotopy. They reanalyze functional data to argue that functional differences between HVAs can be explained by retinotopic coverage. Finally, they compare the classification of mouse visual cortex to that of other species to argue that our current classification is inconsistent with those used in other model species.
Strengths:
This manuscript is bold and thought-provoking, and is a must-read for mouse visual neuroscientists. The authors take a strong stance on combining all HVAs, with the possible exception of area POR, into a single V2 region. Although I suspect many in the field will find that their proposal goes too far, many will agree that we need to closely examine the assumptions of previous classifications to derive a more accurate areal map. The authors' supporting analyses are clear and bolster their argument. Finally, they make a compelling argument for why the classification is not just semantic, but has ramifications for the design of experiments and analysis of data.
Weaknesses:
Although I enjoyed the polemic nature of the manuscript, there are a few issues that weaken their argument.
(1) Although the authors make a compelling argument that retinotopic reversals are insufficient to define distinct regions, they are less clear about what would constitute convincing evidence for distinct visual regions. They mention that a distinct area V3 has been (correctly) defined in ferrets based on "cytoarchitecture, anatomy, and functional properties", but elsewhere argue that none of these factors are sufficient to parcellate any of the HVAs in mouse cortex, despite some striking differences between HVAs in each of these factors. It would be helpful to clearly define a set of criteria that could be used for classifying distinct regions.
We agree the revised manuscript would benefit from a clear discussion of updated rules of area delineation in the mouse. In brief, we argue that retinotopy alone should not be used to delineate area boundaries in mice, or any other species. Although there is some evidence for functional property, architecture, and connectivity changes across mouse HVAs, area boundaries continue to be defined primarily, and sometimes solely (Garrett et al., 2014; Juavinett et al., 2018; Zhuang et al., 2017), based on retinotopy. We acknowledge that earlier work (Wang and Burkhalter, 2007; Wang et al., 2011) did consider cytoarchitecture and connectivity alongside retinotopy, but more recent work has shifted to a focus on retinotopy as indicated by the currently accepted criterion for area delineation.
As reviewer #2 points out, the present criteria for mouse visual area delineation can be found in the Methods section of: [Garrett, M.E., Nauhaus, I., Marshel, J.H., and Callaway, E.M. (2014)].
Criterion 1: Each area must contain the same visual field sign at all locations within the area.
Criterion 2: Each visual area cannot have a redundant representation of visual space.
Criterion 3: Adjacent areas of the same visual field sign must have a redundant representation.
Criterion 4: An area's location must be consistently identifiable across experiments.
As discussed in the manuscript, recent evidence in higher order visual cortex of tree shrews and rats led us to question the universality of these criteria across species. Specifically, tree shrew V2, macaque V2, and marmoset DM, exhibit reversals in visual field-sign in what are defined as single visual areas. This suggests that criterion 1 should be updated. It also suggests that Criterion 2 and 3 should be updated since visual field sign reversals often co-occur with retinotopic redundancies, since reversing course in the direction of progression along the visual field can easily lead to coverage of visual field regions already traveled.
More broadly, we argue that topography is just one of several criteria that should be considered in area delineation. We understand that few visual areas in any species meet all criteria, but we emphasize that topography cannot consistently be the sole satisfied criterion – as it currently appears to be for many mouse HVAs. Inspired by a recent perspective on cortical area delineation (Petersen et al., 2024), we suggest the following rules, that will be worked into the revised version of the manuscript. Topography is a criterion, but it comes after considerations of function, architectonics and connectivity.
(1) Function—Cortical areas differ from neighboring areas in their functional properties
(2) Architectonics—Cortical areas often exhibit distinctions from neighboring areas in multiple cyto- and myeloarchitectonic markers
(3) Connectivity—Cortical areas are characterized by a specific set of connectional inputs and outputs from and to other areas
(4) Topography—Cortical areas often exhibit a distinct topography that balances maximal coverage of the sensory field with minimal redundancy of coverage within an area.
As we discuss in the manuscript, although there are functional, architectonic, and connectivity differences across mouse HVAs, they typically vary smoothly across multiple areas – such that neighboring areas share the same properties and there are no sharp borders. For instance, sharp borders in cytoarchitecture are generally lacking in the mouse HVAs. A notable exceptions to this is the clear and sharp change in m2AChR expression that occurs between LM and AL (Wang et al., 2011).
(2) On a related note, although the authors carry out impressive analyses to show that differences in functional properties between HVAs could be explained by retinotopy, they glossed over some contrary evidence that there are functional differences independent of retinotopy. For example, axon projections to different HVAs originating from a single V1 injection - presumably including neurons with similar retinotopy - exhibit distinct functional properties (Glickfeld LL et al, Nat Neuro, 2013). As another example, interdigitated M2+/M2- patches in V1 show very different HVA connectivity and response properties, again independent of V1 location/retinotopy (Meier AM et al., bioRxiv). One consideration is that the secondary regions might be considered a single V2 with distinct functional modules based on retinotopy and connectivity (e.g., V2LM, V2PM, etc).
Thank you for the correction. We will revise the text to discuss (Glickfeld et al., 2013), as it remains some of the strongest evidence in favor of retinotopy-independent functional specialization of mouse HVAs. However, one caveat of this study is the size of the V1 injection that is the source of axons studied in the HVAs. As apparent in Figure 1B, the large injection covers nearly a quarter of V1. It is worth nothing that (Han et al., 2018) found, using single-cell reconstructions and MAPseq, that the majority of V1 neurons project to multiple nearby HVA targets. In this experiment the tracing does not suffer from the problem of spreading over V1’s retinotopic map, and suggests that, presumably retinotopically matched, locations in each area receive shared inputs from the V1 population rather than a distinct but spatially interspersed subset. In fact, the authors conclude “Interestingly, the location of the cell body within V1 was predictive of projection target for some recipient areas (Extended Data Fig. 8). Given the retinotopic organization of V1, this suggests that visual information from different parts of visual field may be preferentially distributed to specific target areas, which is consistent with recent findings (Zhuang et al., 2017)”. Given an injection covering a large portion of the retinotopic map, and the fact that feed-forward projections from V1 to HVAs carry coarse retinotopy - it is difficult to prove that functional specializations noted in the HVA axons are retinotopyindependent. This would require measurement of receptive field location in the axonal boutons, which the authors did not perform (possibly because the SNR of calcium indicators prevented such measurements at the time).
Another option would be to show that adjacent neurons in V1, that project to far-apart HVAs, exhibit distinct functional properties on par with differences exhibited by neurons in very different parts of V1 due to retinotopy. In other words, the functional specificity of V1 inputs to HVAs at retinotopically identical locations is of the same order as those that might be gained by retinotopic biases. To our knowledge, such a study has not been conducted, so we have decided to measure the data in collaboration with the Allen Institute. As part of the Allen Institute’s pioneering OpenScope project, we will make careful two-photon and electrophysiology measurements of functional properties, including receptive field location, SF, and TF in different parts of the V1 retinotopic map. Pairing this data with existing Allen Institute datasets on functional properties of neurons in the HVAs will allow us to rule in, or rule-out, our hypotheses regarding retinotopy as the source of functional specialization in mouse HVAs. We will update the discussion in the revised manuscript to better reflect the need for additional evidence to support or refute our proposal.
Meier AM et al., bioRxiv 2025 (Meier et al., 2025) was published after our submission, but we are thankful to the reviewers for guiding our attention to this timely paper. Given the recent findings on the influence of locomotion on rodent and primate visual cortex, it is very exciting to see clearly specialized circuits for processing self-generated visual motion in V1. However, it is difficult to rule out the role of retinotopy as the HVA areas (LM, AL, RL) participating in the M2+ network less responsive to self-generated visual motion exhibit a bias for the medial portion of the visual field and the HVA area (PM) involved in the M2- network responsive to self-generated visual motion exhibit a bias for the lateral (or peripheral) parts of the visual field. For instance, a peripheral bias in area PM has been shown using retrograde tracing as in Figure 6 of (Morimoto et al., 2021), single-cell anterograde tracing as in Extended Data Figure 8 of (Han et al., 2018), and functional imaging studies (Zhuang et al., 2017). Recent findings in the marmoset also point to visual circuits in the peripheral, but not central, visual field being significantly modulated by selfgenerated movements (Rowley et al., 2024).
However, a visual field bias in area PM that selectively receive M2- inputs is at odds with the clear presence of modular M2+/M2- patches across the entire map of V1 (Ji et al., 2015). One possibility supported by existing data is that neurons in M2- patches, as well as those in M2+ patches, in the central representation of V1 make fewer or significantly weaker connections with area PM compared to areas LM, AL and RL. Evidence to the contrary would support retinotopy-independent and functionally specialized inputs from V1 to HVAs.
(3) Some of the HVAs-such as AL, AM, and LI-appear to have redundant retinotopic coverage with other HVAS, such as LM and PM. Moreover, these regions have typically been found to have higher "hierarchy scores" based on connectivity (Harris JA et al., Nature, 2019; D'Souza RD et al., Nat Comm, 2022), though unfortunately, the hierarchy levels are not completely consistent between studies. Based on existing evidence, there is a reasonable argument to be made for a hybrid classification, in which some regions (e.g., LM, P, PM, and RL) are combined into a single V2 (though see point #2 above) while other HVAs are maintained as independent visual regions, distinct from V2. I don't expect the authors to revise their viewpoint in any way, but a more nuanced discussion of alternative classifications is warranted.
We understand that such a proposal would combine a subset of areas with matched field sign (LM, P, PM, and RL) would be less extreme and received better by the community. This would create a V2 with a smooth map without reversals or significant redundant retinotopic coverage. However, the intuition we have built from our modeling studies suggest that both these areas, and the other smaller areas with negative field sign (AL, AM, LI), are a byproduct of a complex single map of the visual field that exhibits reversals as it contorts around the triangular and tear-shaped boundaries of V1. In other words, we believe the redundant coverage and field-sign changes/reversals are a byproduct of a single secondary visual field in V2 constrained by the cortical dimensions of V1. That being said, we understand that area delineations are in part based on a consensus by the community. Therefore we will continue to discuss our proposal with community members, and we will incorporate new evidence supporting or refuting our hypothesis, before we submit our revised manuscript.
Reviewer #2 (Public review):
Summary:
The study by Rowley and Sedigh-Sarvestani presents modeling data suggesting that map reversals in mouse lateral extrastriate visual cortex do not coincide with areal borders, but instead represent borders between subregions within a single area V2. The authors propose that such an organization explains the partial coverage in higher-order areas reported by Zhuang et al., (2017). The scheme revisits an organization proposed by Kaas et al., (1989), who interpreted the multiple projection patches traced from V1 in the squirrel lateral extrastriate cortex as subregions within a single area V2. Kaas et al's interpretation was challenged by Wang and Burkhalter (2007), who used a combination of topographic mapping of V1 connections and receptive field recordings in mice. Their findings supported a different partitioning scheme in which each projection patch mapped a specific topographic location within single areas, each containing a complete representation of the visual field. The area map of mouse visual cortex by Wang and Burkhalter (2007) has been reproduced by hundreds of studies and has been widely accepted as ground truth (CCF) (Wang et al., 2020) of the layout of rodent cortex. In the meantime, topographic mappings in marmoset and tree shew visual cortex made a strong case for map reversals in lateral extrastriate cortex, which represent borders between functionally diverse subregions within a single area V2. These findings from non-rodent species raised doubts about whether during evolution, different mammalian branches have developed diverse partitioning schemes of the cerebral cortex. Rowley and Sedigh-Sarvestani favor a single master plan in which, across evolution, all mammalian species have used a similar blueprint for subdividing the cortex.
Strengths:
The story illustrates the enduring strength of science in search of definitive answers.
Weaknesses:
To me, it remains an open question whether Rowley and Sedigh-Sarvestani have written the final chapter of the saga. A key reason for my reservation is that the areas the maps used in their model are cherry-picked. The article disregards published complementary maps, which show that the entire visual field is represented in multiple areas (i.e. LM, AL) of lateral extrastriate cortex and that the map reversal between LM and AL coincides precisely with the transition in m2AChR expression and cytoarchitecture (Wang and Burkhalter, 2007; Wang et al., 2011). Evidence from experiments in rats supports the gist of the findings in the mouse visual cortex (Coogan and Burkhalter, 1993).
We would not claim to have written the final chapter of the saga. Our goal was to add an important piece of new evidence to the discussion of area delineations across species. We believe this new evidence supports our unification hypothesis. We also believe that there are several missing pieces of data that could support or refute our hypothesis. We have begun a collaboration to collect some of this data.
(1) The selective use of published evidence, such as the complete visual field representation in higher visual areas of lateral extrastriate cortex (Wang and Burkhalter, 2007; Wang et al., 2011) makes the report more of an opinion piece than an original research article that systematically analyzes the area map of mouse visual cortex we have proposed. No direct evidence is presented for a single area V2 with functionally distinct subregions.
This brings up a nuanced issue regarding visual field coverage. Wang & Burkhalter, 2007 Figure 6 shows the receptive field of sample neurons in area LM that cover the full range between 0 and 90 degrees of azimuth, and -40 to 80 degree of elevation – which essentially matches the visual field coverage in V1. However, we do not know whether these neurons are representative of most neurons in area LM. In other words, while these single-cell recordings along selected contours in cortex show the span of the visual field coverage, they may not be able to capture crucial information about its shape, missing regions of the visual field or potential bias. To mitigate this, visual field maps measured with electrophysiology are commonly produced by even sampling across the two dimensions of the visual area, either by moving a single electrode along a grid-pattern (e.g. (Manger et al., 2002)), or using a grid-liked multi-electrode probe (e.g. (Yu et al., 2020)). This was not carried out either in Wang & Burkhalter 2007 or Wang et al. 2011. Even sampling of cortical space is time consuming and difficult with electrophysiology, but efficient with functional imaging. Therefore, despite the likely under-estimation of visual field coverage, imaging techniques are valuable in that they can efficiently exhibit not only the span of the visual field of a cortical region, but also its shape and bias.
Multiple functional imaging studies that simultaneously measure visual field coverage in V1 and HVAs report a bias in the coverage of HVAs, relative to that in V1 (Garrett et al., 2014; Juavinett et al., 2018; Zhuang et al., 2017). While functional imaging will likely underestimate receptive fields compared to electrophysiology, the consistent observation of an orderly bias for distinct parts of the visual field across the HVAs suggests that at least some of the HVAs do not have full and uniform coverage of the visual field comparable to that in V1. For instance, (Garrett et al., 2014) show that the total coverage in HVAs, when compared to V1, is typically less than half (Figure 6D) and often irregularly shaped.
Careful measurements of single-cell receptive fields, using mesoscopic two-photon imaging across the HVAs would settle this question. As reviewer #1 points out, this is technically feasible, though no dataset of this kind exists to our knowledge.
(2) The article misrepresents evidence by commenting that m2AChR expression is mainly associated with the lower field. This is counter to published findings showing that m2AChR spans across the entire visual field (Gamanut et al., 2018; Meier et al., 2021). The utility of markers for delineating areal boundaries is discounted, without any evidence, in disregard of evidence for distinct areal patterns in early development (Wang et al., 2011). Pointing out that markers can be distributed non-uniformly within an area is well-familiar. m2AChR is non-uniformly expressed in mouse V1, LM and LI (Ji et al., 2015; D'Souza et al., 2019; Meier et al., 2021). Recently, it has been found that the patchy organization within V1 plays a role in the organization of thalamocortical and intracortical networks (Meier et al., 2025). m2AChR-positive patches and m2AChR-negative interpatches organize the functionally distinct ventral and dorsal networks, notably without obvious bias for upper and lower parts of the visual field.
We wrote that “Future work showed boundaries in labeling of histological markers such as SMI-32 and m2ChR labeling, but such changes mostly delineated area LM/AL (Wang et al., 2011) and seemed to be correlated with the representation of the lower visual field.” The latter statement regarding the representation of the lower visual field is directly referencing the data in Figure 1 of (Wang et al., 2011), which is titled “Figure 1: LM/AL border identified by the transition of m2AChR expression coincides with receptive field recordings from lower visual field.” Similar to the Wang et al., we were simply referring to the fact that the border of area LM/AL co-exhibits a change in m2AChR expression as well as lower-visual field representation.
(3) The study has adopted an area partitioning scheme, which is said to be based on anatomically defined boundaries of V2 (Zhuang et al., 2017). The only anatomical borders used by Zhuang et al. (2017) are those of V1 and barrel cortex, identified by cytochrome oxidase staining. In reality, the partitioning of the visual cortex was based on field sign maps, which are reproduced from Zhuang et al., (2017) in Figure 1A. It is unclear why the maps shown in Figures 2E and 2F differ from those in Figure 1A. It is possible that this is an oversight. But maintaining consistent areal boundaries across experimental conditions that are referenced to the underlying brain structure is critical for assigning modeled projections to areas or sub-regions. This problem is evident in Figure 2F, which is presented as evidence that the modeling approach recapitulates the tracings shown in Figure 3 of Wang and Burkhalter (2007). The dissimilarities between the modeling and tracing results are striking, unlike what is stated in the legend of Figure 2F.
Thanks for this correction. By “anatomical boundaries of higher visual cortex”, we meant the cortical boundary between V1 and higher order visual areas on one end, and the outer edge of the envelope that defines the functional boundaries of the HVAs in cortical space (Zhuang et al., 2017). The reviewer is correct that we should have referred to these as functional boundaries. The word ‘anatomical’ was meant to refer to cortical space, rather than visual field space.
More generally though, there is no disagreement between the partitioning of visual cortex in Figure 1 and 2. Rather, the portioning in Figure 1 is directly taken from Zhuang et al., (2017) whereas those in Figure 2 are produced by mathematical model simulation. As such, one would not expect identical areal boundaries between Figure 2 and Figure 1. What we aimed to communicate with our modeling results, is that a single area can exhibit multiple visual field reversals and retinotopic redundancies if it is constrained to fit around V1 and cover a visual field approximately matched to the visual field coverage in V1. We defined this area explicitly as a single area with a single visual field (boundaries shown in Figure 2A). So the point of our simulation is to show that even an explicitly defined single area can appear as multiple areas if it is constrained by the shape of mouse V1, and if visual field reversals are used to indicate areal boundaries. As in most models, different initial conditions and parameters produce a complex visual field which will appear as multiple HVAs when delineated by areal boundaries. What is consistent however, is the existence of complex single visual field that appears as multiple HVAs with partially overlapping coverage.
Similarly, we would not expect a simple model to exactly reproduce the multi-color tracer injections in Wang and Burkhalter (2007). However, we find it quite compelling that the model can produce multiple groups of multi-colored axonal projections beyond V1 that can appear as multiple areas each with their own map of the visual field using current criteria, when the model is explicitly designed to map a single visual field. We will explain the results of the model, and their implications, better in the revised manuscript.
(4) The Rowley and Sedigh-Sarvestani find that the partial coverage of the visual field in higher order areas shown by Zhuang et al (2017) is recreated by the model. It is important to caution that Zhuang et al's (2017) maps were derived from incomplete mappings of the visual field, which was confined to -25-35 deg of elevation. This underestimates the coverage we have found in LM and AL. Receptive field mappings show that LM covers 0-90 deg of azimuth and -30-80 elevation (Wang and Burkhalter, 2007). AL covers at least 0-90 deg of azimuth and -30-50 deg of elevation (Wang and Burkhalter, 2007; Wang et al., 2011). These are important differences. Partial coverage in LM and AL underestimates the size of these areas and may map two projection patches as inputs to subregions of a single area rather than inputs to two separate areas. Complete, or nearly complete, visual representations in LM and AL support that each is a single area. Importantly, both areas are included in a callosal-free zone (Wang and Burkhalter, 2007). The surrounding callosal connections align with the vertical meridian representation. The single map reversal is marked by a transition in m2AChR expression and cytoarchitecture (Wang et al., 2011).
This is a good point. We do not expect that expanding the coverage of V1 will change the results of the model significantly. However, for the revised manuscript, we will update V1 coverage to be accurate, repeat our simulations, and report the results.
(5) The statement that the "lack of visual field overlap across areas is suggestive of a lack of hierarchical processing" is predicated on the full acceptance of the mappings by Zhuang et al (2017). Based on the evidence reviewed above, the reclassification of visual areas proposed in Figure 1C seems premature.
The reviewer is correct. In the revised manuscript, we will be careful to distinguish bias in visual field coverage across areas from presence or lack of visual field overlap.
(6) The existence of lateral connections is not unique to rodent cortex and has been described in primates (Felleman and Van Essen, 1991).
(7) Why the mouse and rat extrastriate visual cortex differ from those of many other mammals is unclear. One reason may be that mammals with V2 subregions are strongly binocular.
This is an interesting suggestion, and careful visual topography data from rabbits and other lateral eyed animals would help to evaluate it. For what it’s worth, tree shrews are lateral eyed animals with only 50 degrees of binocular visual field and also show V2 subregions.
Reviewer #3 (Public review):
Summary:
The authors review published literature and propose that a visual cortical region in the mouse that is widely considered to contain multiple visual areas should be considered a single visual area.
Strengths:
The authors point out that relatively new data showing reversals of visual-field sign within known, single visual areas of some species require that a visual field sign change by itself should not be considered evidence for a border between visual areas.
Weaknesses:
The existing data are not consistent with the authors' proposal to consolidate multiple mouse areas into a single "V2". This is because the existing definition of a single area is that it cannot have redundant representations of the visual field. The authors ignore this requirement, as well as the data and definitions found in published manuscripts, and make an inaccurate claim that "higher order visual areas in the mouse do not have overlapping representations of the visual field". For quantification of the extent of overlap of representations between 11 mouse visual areas, see Figure 6G of Garrett et al. 2014. [Garrett, M.E., Nauhaus, I., Marshel, J.H., and Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of neuroscience 34, 12587-12600. 10.1523/JNEUROSCI.1124-14.2014.
Thank you for this correction, we admit we should have chosen our words more carefully. In the revised manuscript, we will emphasize that higher order visual areas in the mouse do have some overlap in their representations but also exhibit bias in their coverage. This is consistent with our proposal and in fact our model simulations in Figure 2E also show overlapping representations along with differential bias in coverage. However, we also note Figure 6 of Garret et al. 2014 provides several pieces of evidence in support of our proposal that higher order areas are sub-regions of a single area V2. Specifically, the visual field coverage of each area is significantly less than that in V1 (Garret et al. 2014, Figure 6D). While the imaging methods used in Garret et al. likely under-estimate receptive fields, one would assume they would similarly impact measurements of coverage in V1 and HVAs. Secondly, each area exhibits a bias towards a different part of the visual field (Figure 6C and E), that this bias is distinct for different areas but proceeds in a retinotopic manner around V1 - with adjacent areas exhibiting biases for nearby regions of the visual field (Figure 6E). Thus, the biases in the visual field coverage across HVAs appear to be related and not independent of each other. As we show in our modeling and in Figure 2, such orderly and inter-related biases can be created from a single visual field constrained to share a border with mouse V1.
With regards to the existing definition of a single area: we did not ignore the requirement that single areas cannot have redundant representations of the visual field. Rather, we believe that this requirement should be relaxed considering new evidence collected from other species, where multiple visual field reversals exist within the same visual area. We understand this issue is nuanced and was not made clear in the original submission.
In the revised manuscript, we will clarify that visual field reversals often exhibit redundant retinotopic representation on either side of the reversal. In the revised manuscript we will clarify that our argument that multiple reversals can exist within a single visual area in the mouse, is an argument that some retinotopic redundancy can exist with single visual areas. Such a re-classification would align how we define visual areas in mice with existing classification in tree shrews, ferrets, cats, and primates – all of whom have secondary visual areas with complex retinotopic maps exhibiting multiple reversals and redundant retinotopic coverage.