Uncovering the electrical synapse proteome in retinal neurons via in vivo proximity labeling

  1. College of Optometry, University of Houston, Houston, United States
  2. Moran Eye Center/Ophthalmology, University of Utah, Salt Lake City, United States
  3. Animal Navigation/ Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
  4. Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
  5. Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
  6. Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
  7. Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Xin Duan
    University of California, San Francisco, San Francisco, United States of America
  • Senior Editor
    Lu Chen
    Stanford University, Stanford, United States of America

Reviewer #1 (Public review):

Summary:

This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses. The authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein, shows particularly strong evidence of being an integral component of the electrical synapse. However, many key experimental details are missing (e.g. mass spectrometry), making it difficult to assess the strength of the evidence.

Strengths:

One newly identified protein, SIPA1L3, has been validated both by immunoprecipitation and immunohistochemistry. The localization at the electrical synapse is very striking.
A large number of candidate interacting proteins were validated with immunostaining in vivo or in vitro.

Weaknesses:

There is no systematic comparison between the zebrafish and mouse proteome. The claim that there is "a high degree of evolutionary conservation" was not substantiated.

No description of how mass spectrometry was done and what type of validation was done.

The threshold for enrichment seems arbitrary.

Inconsistent nomenclature and punctuation usage.

The description of figures is very sparse and error-prone (e.g. Figure 6).

In Figure 1B, there is very broad non-specific labeling by avidin in zebrafish (In contrast to the more specific avidin binding in mice, Figure 2B). How are the authors certain that the enrichment is specific at the electrical synapse?

In Figure 1E, there is very little colocalization between Cx35 and Cx34.7. More quantification is needed to show that it is indeed "frequently associated."

Expression of GFP in HCs would potentially be an issue, since GFP is fused to Cx36 (regardless of whether HC expresses Cx36 endogenously) and V5-TurboID-dGBP can bind to GFP and biotinylate any adjacent protein.

Figure 7: the description does not match up with the figure regarding ZO-1 and ZO-2.

Reviewer #2 (Public review):

Summary:

This study aimed to uncover the protein composition and evolutionary conservation of electrical synapses in retinal neurons. The authors employed two complementary BioID approaches: expressing a Cx35b-TurboID fusion protein in zebrafish photoreceptors and using GFP-directed TurboID in Cx36-EGFP-labeled mouse AII amacrine cells. They identified conserved ZO proteins and endocytosis components in both species, along with over 50 novel proteins related to adhesion, cytoskeleton remodeling, membrane trafficking, and chemical synapses. Through a series of validation studies¬-including immunohistochemistry, in vitro interaction assays, and immunoprecipitation - they demonstrate that novel scaffold protein SIPA1L3 interacts with both Cx36 and ZO proteins at electrical synapse. Furthermore, they identify and localize proteins ZO-1, ZO-2, CGN, SIPA1L3, Syt4, SJ2BP, and BAI1 at AII/cone bipolar cell gap junctions.

Strengths:

The study demonstrates several significant strengths in both experimental design and validation approaches. First, the dual-species approach provides valuable insights into the evolutionary conservation of electrical synapse components across vertebrates. Second, the authors compare two different TurboID strategies in mice and demonstrate that the HKamac promoter and GFP-directed approach can successfully target the electrical synapse proteome of mouse AII amacrine cells. Third, they employed multiple complementary validation approaches - including retinal section immunohistochemistry, in vitro interaction assays, and immunoprecipitation-providing evidence supporting the presence and interaction of these proteins at electrical synapses.

Weaknesses:

The conclusions of this paper are supported by data; however, some aspects of the quantitative proteomics analysis require clarification and more detailed documented. The differential threshold criteria (>3 log2 fold for mouse vs >1 log2 fold for zebrafish) will benefit from biological justification, particularly given the cross-species comparison. Additionally, providing details on the number of biological or technical replicates used in this study, along with analyses of how these replicates compare to each other, would strengthen the confidence in the identification of candidate proteins. Furthermore, including negative controls for the histological validation of proteins interacting with Cx36 could increase the reliability of the staining results.

While the study successfully characterized the presence of candidate proteins at the electrical synapses between AII amacrine cells and cone bipolar cells, it did not compare protein compositions between the different types of electrical synapses within the circuit. Given that AII amacrine cells form both homologous (AII-AII) and heterologous (AII-cone bipolar cell) electrical synapses-connections that serve distinct functional roles in retinal signaling processing-a comparative analysis of their molecular compositions could have provided important insights into synapse specificity.

Reviewer #3 (Public review):

Summary:

This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

Strengths:

A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

Weaknesses:

I do not see major weaknesses in this paper. A minor point is that, although the immunostaining in this study is beautifully executed, the quantification to verify the colocalization of the identified proteins with gap junctions is missing. In particular, endocytosis component proteins are abundant in the IPL, making it unclear whether their colocalization with gap junction is above chance level (e.g. EPS15l1, HIP1R, SNAP91, ITSN in Figure 3B).

Author response:

Public Reviews:

Reviewer #1 (Public review):

Summary:

This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses. The authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein, shows particularly strong evidence of being an integral component of the electrical synapse. However, many key experimental details are missing (e.g. mass spectrometry), making it difficult to assess the strength of the evidence.

Strengths:

One newly identified protein, SIPA1L3, has been validated both by immunoprecipitation and immunohistochemistry. The localization at the electrical synapse is very striking.
A large number of candidate interacting proteins were validated with immunostaining in vivo or in vitro.

Weaknesses:

There is no systematic comparison between the zebrafish and mouse proteome. The claim that there is "a high degree of evolutionary conservation" was not substantiated.

We agree that we should have included a comprehensive comparison of proteins captured in the different species. We are assembling this table and it will be included in the revised manuscript. There is, indeed, significant conservation of many of the proteins enriched in both species.

No description of how mass spectrometry was done and what type of validation was done.

Since the mass spec was outsourced to a core facility, we had not included methodological details. We have requested these and will include full details in the revised version of the manuscript. In terms of “validation,” enrichment of proteins at electrical synapses was determined based on capture relative to control samples (non-transgenic zebrafish retinas or non-transgenic mouse retinas infected with the dGBP-TurboID virus) captured and processed at the same time. Actual validations based on protein co-localization and pull-downs is the subject of the rest of the manuscript, and could only be done for a fraction of the identified proteins. This type of validation can be pursued in many future studies.

The threshold for enrichment seems arbitrary.

Yes, the thresholds are somewhat arbitrary. This is due to the fact that experiments that captured larger total amounts of protein (mouse retina samples) had higher signal-to-noise ratio than those that captured smaller total amounts of protein (zebrafish retina). This allowed us to use a more stringent threshold in the mouse dataset to focus on high probability captured proteins.

Inconsistent nomenclature and punctuation usage.

We have scanned through the manuscript and updated terms that were used inconsistently in the interim revision of the manuscript.

To describe the mass spec procedure, we will get in touch with the mass spec facility and provide the details in the next round of submission.

The description of figures is very sparse and error-prone (e.g. Figure 6).

In Figure 1B, there is very broad non-specific labeling by avidin in zebrafish (In contrast to the more specific avidin binding in mice, Figure 2B). How are the authors certain that the enrichment is specific at the electrical synapse?

The enrichment of the proteins we identified is specific for electrical synapses because we compared the abundance of all candidates between Cx35b-V5-TurboID and wildtype retinas. Proteins that are components of electrical synapses, will only show up in the Cx35b-V5-TurboID condition. The western blot (Strep-HRP) in figure 1C shows the differences in the streptavidin labeling and hence the enrichment of proteins that are part of electrical synapses. Moreover, while the background appears to be quite abundant in sections, biotinylation is a rare posttranslational modification and mainly occurs in carboxylases: The two intense bands that show up above 50 and 75 kDa. The background mainly originates from these two proteins.

In Figure 1E, there is very little colocalization between Cx35 and Cx34.7. More quantification is needed to show that it is indeed "frequently associated."

We agree that “frequently associated” is too strong as a statement. We corrected this and instead wrote “that Cx34.7 was only expressed in the outer plexiform layer (OPL) where it was associated with Cx35b at some gap junctions” in line 150. There are many gap junctions at which Cx35b is not colocalized with Cx34.7.

Expression of GFP in HCs would potentially be an issue, since GFP is fused to Cx36 (regardless of whether HC expresses Cx36 endogenously) and V5-TurboID-dGBP can bind to GFP and biotinylate any adjacent protein.

Thank you for this suggestion! There should be no Cx36-GFP expression in horizontal cells, which means that the nanobody cannot bind to anything in these cells. Moreover, to recognize specific signals from non-specific background, we included wild type retinas throughout the entire experiments. This condition controls for non-specific biotinylation.

Figure 7: the description does not match up with the figure regarding ZO-1 and ZO-2.

It appears that a portion of the figure legend was left out of the submitted version of the manuscript. We have put the legend for panels A through C back into the manuscript in the interim revision.

Reviewer #2 (Public review):

Summary:

This study aimed to uncover the protein composition and evolutionary conservation of electrical synapses in retinal neurons. The authors employed two complementary BioID approaches: expressing a Cx35b-TurboID fusion protein in zebrafish photoreceptors and using GFP-directed TurboID in Cx36-EGFP-labeled mouse AII amacrine cells. They identified conserved ZO proteins and endocytosis components in both species, along with over 50 novel proteins related to adhesion, cytoskeleton remodeling, membrane trafficking, and chemical synapses. Through a series of validation studies¬-including immunohistochemistry, in vitro interaction assays, and immunoprecipitation - they demonstrate that novel scaffold protein SIPA1L3 interacts with both Cx36 and ZO proteins at electrical synapse. Furthermore, they identify and localize proteins ZO-1, ZO-2, CGN, SIPA1L3, Syt4, SJ2BP, and BAI1 at AII/cone bipolar cell gap junctions.

Strengths:

The study demonstrates several significant strengths in both experimental design and validation approaches. First, the dual-species approach provides valuable insights into the evolutionary conservation of electrical synapse components across vertebrates. Second, the authors compare two different TurboID strategies in mice and demonstrate that the HKamac promoter and GFP-directed approach can successfully target the electrical synapse proteome of mouse AII amacrine cells. Third, they employed multiple complementary validation approaches - including retinal section immunohistochemistry, in vitro interaction assays, and immunoprecipitation-providing evidence supporting the presence and interaction of these proteins at electrical synapses.

Weaknesses:

The conclusions of this paper are supported by data; however, some aspects of the quantitative proteomics analysis require clarification and more detailed documented. The differential threshold criteria (>3 log2 fold for mouse vs >1 log2 fold for zebrafish) will benefit from biological justification, particularly given the cross-species comparison. Additionally, providing details on the number of biological or technical replicates used in this study, along with analyses of how these replicates compare to each other, would strengthen the confidence in the identification of candidate proteins. Furthermore, including negative controls for the histological validation of proteins interacting with Cx36 could increase the reliability of the staining results.

While the study successfully characterized the presence of candidate proteins at the electrical synapses between AII amacrine cells and cone bipolar cells, it did not compare protein compositions between the different types of electrical synapses within the circuit. Given that AII amacrine cells form both homologous (AII-AII) and heterologous (AII-cone bipolar cell) electrical synapses-connections that serve distinct functional roles in retinal signaling processing-a comparative analysis of their molecular compositions could have provided important insights into synapse specificity.

Reviewer #3 (Public review):

Summary:

This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

Strengths:

A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

Thank you for these comments.

Weaknesses:

I do not see major weaknesses in this paper. A minor point is that, although the immunostaining in this study is beautifully executed, the quantification to verify the colocalization of the identified proteins with gap junctions is missing. In particular, endocytosis component proteins are abundant in the IPL, making it unclear whether their colocalization with gap junction is above chance level (e.g. EPS15l1, HIP1R, SNAP91, ITSN in Figure 3B).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation