The coarse mental map of the breast is anchored on the nipple

  1. Committee on Computational Neuroscience, University of Chicago, Chicago, United States
  2. Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
  3. Department of Neuroscience, Middlebury College, Middlebury, United States
  4. Department of Obstetrics and Gynecology, University of Chicago, Chicago, United States
  5. Department of Medicine-Geriatrics and Palliative Medicine, University of Chicago, Chicago, United States
  6. Comprehensive Cancer Center, University of Chicago, Chicago, United States
  7. Neuroscience Institute, University of Chicago, Chicago, United States

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Tamar Makin
    University of Cambridge, Cambridge, United Kingdom
  • Senior Editor
    Tamar Makin
    University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

The authors investigated tactile spatial perception on the breast using discrimination, categorization, and direct localization tasks. They reach four main conclusions:

(1) The breast has poor tactile spatial resolution.

This conclusion is based on comparing just noticeable differences, a marker of tactile spatial resolution, across four body regions, two on the breast. The data compellingly support the conclusion; the study outshines other studies on tactile spatial resolution that tend to use problematic measures of tactile resolution, such as two-point-discrimination thresholds. The result will interest researchers in the field and possibly in other fields due to the intriguing tension between the finding and the sexually arousing function of touching the breast.

The manuscript incorrectly describes the result as poor spatial acuity. Acuity measures the average absolute error, and acuity is good when response biases are absent. Precision relates to the error variance. It is common to see high precision with low acuity or vice versa. Just noticeable differences assess precision or spatial resolution, while points of subjective equality evaluate acuity or bias. Similar confusions between these terms appear throughout the manuscript.
A paragraph within the next section seems to follow up on this insight by examining the across-participant consistency of the differences in tactile spatial resolution between body parts. To this aim, pairwise rank correlations between body sites are conducted. This analysis raises red flags from a statistical point of view. 1) An ANOVA and its follow-up tests assume no variation in the size of the tested effect but varying base values across participants. Thus, if significant differences between conditions are confirmed by the original statistical analysis, most participants will have better spatial resolution in one condition than the other condition, and the difference between body sites will be similar across participants. 2) Correlations are power-hungry, and non-parametric tests are power-hungry. Thus, the number of participants needed for a reliable rank correlation analysis far exceeds that of the study. In sum, a correlation should emerge between body sites associated with significantly different tactile JNDs; however, these correlations might only be significant for body sites with pronounced differences due to the sample size.

(2) Larger breasts are associated with lower tactile spatial resolution

This conclusion is based on a strong correlation between participants' JNDs and the size of their breasts. The depicted correlation convincingly supports the conclusion. The sample size is below that recommended for correlations based on power analyses, but simulations show that spurious correlations of the reported size are extremely unlikely at N=18. Moreover, visual inspection rules out that outliers drive these correlations. Thus, they are convincing. This result is of interest to the field, as it aligns with the hypothesis that nerve fibers are more sparsely distributed across larger body parts.

(3) The nipple is a unit

The data do not support this conclusion. The conclusion that the nipple is perceived as a unit is based on poor tactile localization performance for touches on the nipple compared to the areola. The problem is that the localization task is a quadrant identification task with the center being at the nipple. Quadrants for the areola could be significantly larger due to the relative size of the areola and the nipple; the results section seems to suggest this was accounted for when placing the tactile stimuli within the quadrants, but the methods section suggests otherwise. Additionally, the areola has an advantage because of its distance from the nipple, which leads to larger Euclidean distances between the centers of the quadrants than for the nipple. Thus, participants should do better for the areola than for the nipple even if both sites have the same tactile resolution.

To justify the conclusion that the nipple is a unit, additional data would be required. 1) One could compare psychometric curves with the nipple as the center and psychometric curves with a nearby point on the areola as the center. 2) Performance in the quadrant task could be compared for the nipple and an equally sized portion of the areola and tactile locations that have the same distance to the border between quadrants in skin coordinates. 3) Tactile resolution could be directly measured for both body sites using a tactile orientation task with either a two-dot probe or a haptic grating.

Categorization accuracy in each area was tested against chance using a Monte Carlo test, which is fine, though the calculation of the test statistic, Z, should be reported in the Methods section, as there are several options. Localization accuracies are then compared between areas using a paired t-test. It is a bit confusing that once a distribution-approximating test is used, and once a test that assumes Gaussian distributions when the data is Bernoulli/Binomial distributed. Sampling-based and t-tests are very robust, so these surprising choices should have hardly any effect on the results.

A correlation based on N=4 participants is dangerously underpowered. A quick simulation shows that correlation coefficients of randomly sampled numbers are uniformly distributed at such a low sample size. This likely spurious correlation is not analyzed, but quite prominently featured in a figure and discussed in the text, which is worrisome.

(4) Localization of tactile events on the breast is biased towards the nipple

The conclusion that tactile percepts are drawn toward the nipple is based on localization biases for tactile stimuli on the breast compared to the back. Unfortunately, the way participants reported the tactile locations introduces a major confound. Participants indicated the perceived locations of the tactile stimulus on 3D models of these body parts. The nipple is a highly distinctive and cognitively represented landmark, far more so than the scapula, making it very likely that responses were biased toward the nipple regardless of the actual percepts. One imperfect but better alternative would have been to ask participants to identify locations on a neutral grey patch and help them relate this patch to their skin by repeatedly tracing its outline on the skin.

Participants also saw their localization responses for the previously touched locations. This is unlikely to induce bias towards the nipple, but it renders any estimate of the size and variance of the errors unreliable. Participants will always make sure that the marked locations are sufficiently distant from each other.

The statistical analysis is again a homebrew solution and hard to follow. It remains unclear why standard and straightforward measures of bias, such as regressing reported against actual locations, were not used.

Null-hypothesis significance testing only lets scientists either reject the null hypothesis or not. The latter does NOT mean the Null hypothesis is true, i.e., it can never be concluded that there is no effect. This rule applies to every NHST test. However, it raises particular concerns with distribution tests. The only conclusion possible is that the data are unlikely from a population with the tested distribution; these tests do not provide insight into the actual distribution of the data, regardless of whether the result is significant or not.

Reviewer #2 (Public review):

Summary:

The authors tested tactile acuity on the breast of females using several tasks.

Results:

Tactile acuity, assessed by just-noticeable differences in judging whether a touch was above or below a comparison stimulus, was lower on both the lateral and medial breast than on the hand and back. Acuity also scaled inversely with breast size, echoing earlier findings that larger hands exhibit lower acuity, presumably because a similar number of tactile receptors must be distributed over larger or smaller body surfaces. Observing this principle in the breast as on the hand strengthens the view that fixed innervation is a general organizing principle of the tactile system. Both methodology and analysis appear sound.

Most participants were unable to localize touch to a specific quadrant of the nipple, suggesting it is perceived as a single tactile unit. However, the study does not address whether touches to the nipple and areola are confused; conceptualizing the nipple as a perceptual (landmark) unit would suggest that such confusion should not take place. Aside from this limitation, the methodology and analysis appear sound.

Absolute touch localization, assessed by asking participants to indicate locations on a 3D rendering of their own torso, revealed a bias toward the nipple. The authors interpret this as evidence that the nipple serves as a landmark attracting perceived touch. However, as reviewers noted during review, alternative explanations cannot be fully ruled out: because the stimulus array was centered on the nipple, the observed bias may stem from stimulus distribution rather than landmark status. Aside from this caveat, the methodology and analysis appear sound.

Overall assessment:

The study offers a welcome exception to the prevailing bias in tactile research that limits investigation to the hand and arm. Its support for the fixed innervation hypothesis and its suggestion that the nipple may serve as a potential landmark-though requiring further scrutiny-illustrate the value of extending research to other body regions. By employing multiple tasks, the authors address several key aspects of tactile perception and create links to earlier findings.

Author response:

The following is the authors’ response to the original reviews.

Reviewer #1 (Public review):

The statistically adequate way of testing the biases is a hierarchical regression model (LMM) with a distance of the physical location from the nipple as a predictor, and a distance of the reported location from the nipple as a dependent variable. Either variable can be unsigned or signed for greater power, for example, coding the lateral breast as negative and the medial breast as positive. The bias will show in regression coefficients smaller than 1.

Thank you for this suggestion. We have subsequently replaced the relevant ANOVA analyses with LMM analyses. Specifically, we use an LMM for breast and back separately to show the different effects of distance, then use a combined LMM to compare the interaction. Finally, we use an LMM to assess the differences between precision and bias on the back and breast. The new analysis confirms earlier statements and do not change the results/interpretation of the data.

Moreover, any bias towards the nipple could simply be another instance of regression to the mean of the stimulus distribution, given that the tested locations were centered on the nipple. This confound can only be experimentally solved by shifting the distribution of the tested locations. Finally, given that participants indicated the locations on a 3D model of the body part, further experimentation would be required to determine whether there is a perceptual bias towards the nipple or whether the authors merely find a response bias.

A localization bias toward the nipple in this context does not show that the nipple is the anchor of the breast's tactile coordinate system. The result might simply be an instance of regression to the mean of the stimulus distribution (also known as experimental prior). To convincingly show localization biases towards the nipple, the tested locations should be centered at another location on the breast.

Another problem is the visual salience of the nipple, even though Blender models were uniformly grey. With this type of direct localization, it is very difficult to distinguish perceptual from response biases even if the regression to the mean problem is solved. There are two solutions to this problem: 1) Varying the uncertainty of the tactile spatial information, for example, by using a pen that exerts lighter pressure. A perceptual bias should be stronger for more uncertain sensory information; a response bias should be the same across conditions. 2) Measure bias with a 2IFC procedure by taking advantage of the fact that sensory information is noisier if the test is presented before the standard.

We believe that the fact that we explicitly tested two locations with equally distributed test locations, both of which had landmarks, makes this unlikely. Indeed, testing on the back is exactly what the reviewer suggests. It would also be impossible to test this “on another location on the breast” as we are sampling across the whole breast. Moreover, as markers persisted on the model within each block, the participants were generating additional landmarks on each trial. Thus, if there were any regression to the mean, this would be observed for both locations. Nevertheless, we recognize that this test cannot distinguish between a sensory bias towards the nipple and consistent response bias that is always in the direction of the nipple, though to what extent these are the same thing is difficult to disentangle. That said, if we had restricted testing to half of the breast such that the distribution of points was asymmetrical this would allow us to test the hypothesis put forward by the reviewer. We recognize that this is a limitation of the data and have downplayed statements and added caveats accordingly.

We have changed the appropriate heading and text in the discussion to downplay the finding:

“Reports are biased towards the nipple”

“suggesting that the nipple plays a pivotal role in the mental representation of the breast.”

it might be harder to learn the range of locations on the back given that stimulation is not restricted to an anatomically defined region as it is the case for the breast.

We apologize for any confusion but the point distribution is identical between tasks, as described in the methods.

The stability of the JND differences between body parts across subjects is already captured in the analysis of the JNDs; the ANOVA and the post-hoc testing would not be significant if the order were not relatively stable across participants. Thus, it is unclear why this is being evaluated again with reduced power due to improper statistics.

We apologize for any confusion here. Only one ANOVA with post-hoc testing was performed on the data. The second parenthetical describing the test was perhaps redundant and confusing, so I have removed it.

“(Error! Reference source not found.A, B, 1-way ANOVA with Tukey’s HSD post-hoc t-test: p = 0.0284)”

The null hypothesis of an ANOVA is that at least one of the mean values is different from the others; adding participants as a factor does not provide evidence for similarity.

We agree with this statement and have removed the appropriate text.

The pairwise correlations between body parts seem to be exploratory in nature. Like all exploratory analyses, the question arises of how much potential extra insights outweigh the risk of false positives. It would be hard to generate data with significant differences between several conditions and not find any correlations between pairs of conditions. Thus, the a priori chance of finding a significant correlation is much higher than what a correction accounts for.

We broadly agree with this statement. However, we believe that the analyses were important to determine if participants were systematically more or less acute across body parts. Moreover, both the fact that we actually did not observe any other significant relationships and that we performed post-hoc correction imply that no false positives were observed. Indeed, in the one relationship that was observed, we would need to have an assumed FDR over 10x higher than the existing post hoc correction required implying a true relationship.

If the JND at mid breast (measured with locations centered at the nipple) is roughly the same size as the nipple, it is not surprising that participants have difficulty with the categorical localization task on the nipple but perform better than chance on the significantly larger areola.

We agree that it is not surprising given the previously shown data, however, the initial finding is surprising to many and this experiment serves to reinforce the previous finding.

Neither signed nor absolute localization error can be compared to the results of the previous experiments. The JND should be roughly proportional to the variance of the errors.

We apologize for any confusion, however we are not comparing the values, merely observing that the results are consistent.

Reviewer #2 (Public review):

I had a hard time understanding some parts of the report. What is meant by "broadly no relationship" in line 137?

We have removed the qualifier to simplify the text.

It is suggested that spatial expansion (which is correlated with body part size) is related between medial breast and hand - is this to say that women with large hands have large medial breast size? Nipple size was measured, but hand size was not measured, is this correct?

Correct. We have added text to state as such.

It is furthermore unclear how the authors differentiate medial breast and NAC. The sentence in lines 140-141 seems to imply the two terms are considered the same, as a conclusion about NAC is drawn from a result about the medial breast. This requires clarification.

Thank you for catching this, we have corrected it in the text.

Finally, given that the authors suspect that overall localization ability (or attention) may be overshadowed by a size effect, would not an analysis be adequate that integrates both, e.g. a regression with multiple predictors?

If the reviewer means that participants would be consistently “acute” then we believe that SF1 would have stronger correlations. Consequently, we see no reason to add “overall tactile acuity” as a predictor.

In the paragraph about testing quadrants of the nipple, it is stated that only 3 of 10 participants barely outperformed chance with a p < 0.01. It is unclear how a significant ttest is an indication of "barely above chance".

We have adjusted the text to clarify our meaning.

“On the nipple, however, participants were consistently worse at locating stimuli on the nipple than the breast (paired t-test, t = 3.42, p < 0.01) where only 3 of the 10 participants outperformed chance, though the group as a whole outperformed chance (Error! Reference source not found.B, 36% ± 13%; Z = 5.5, p < 0.01).”

The final part of the paragraph on nipple quadrants (starting line 176) explains that there was a trend (4 of 10 participants) for lower tactile acuity being related to the inability to differentiate quadrants. It seems to me that such a result would not be expected: The stated hypothesis is that all participants have the same number of tactile sensors in their nipple and areola, independent of NAC size. In this section, participants determine the quadrant of a single touch. Theoretically, all participants should be equally able to perform this task, because they all have the same number of receptors in each quadrant of nipple and areola. Thus, the result in Figure 2C is curious.

We agree that this result seemingly contradicts observations from the previous experiment, however we believe that it relates to the distinction between the ability to perform relative distinctions and absolute localizations. In the first experiment, the presentation of two sequential points provides an implicit reference whereas in the quadrant task there is no reference. With the results of the third experiment in mind, biases towards the nipple would effectively reduce the ability of participants to identify the quadrant. What this result may imply is that the degree of bias is greater for women with greater expansion. We have added text to the discussion to lay this out.

“This negative trend implicitly contradicts the previous result where one might expect equal performance regardless of size as the location of the stimuli was scaled to the size of the nipple and areola. However, given the absence of a reference point, systematic biases are more likely to occur and thus may reflect a relationship between localization bias and breast size.”

This section reports an Anova (line 193/194) with a factor "participant". This doesn't appear sensible. Please clarify. The factor distance is also unclear; is this a categorical or a continuous variable? Line 400 implies a 6-level factor, but Anovas and their factors, respectively, are not described in methods (nor are any of the other statistical approaches).

We believe this comment has been addressed above with our replacement of the ANOVA with an LMM. We have also added descriptions of the analysis throughout the methods.

The analysis on imprecision using mean pairwise error (line 199) is unclear: does pairwise refer to x/y or to touch vs. center of the nipple?

We have clarified this to now read:

“To measure the imprecision, we computed the mean pairwise distance between each of the reported locations for a given stimulus location and the mean reported location.”

p8, upper text, what is meant by "relative over-representation of the depth axis"? Does this refer to the breast having depth but the equivalent area on the back not having depth? What are the horizontal planes (probably meant to be singular?) - do you simply mean that depth was ignored for the calculation of errors? This seems to be implied in Figure 3AB.

This is indeed what we meant. We have attempted to clarify in the text.

“Importantly, given the relative over-representation of the depth axis for the breast, we only considered angles in the horizontal planes such that the shape of the breast did not influence the results.” Became:

“Importantly, because the back is a relatively flat surface in comparison to the breast, errors were only computed in the horizontal plane and depth was excluded when computing the angular error.”

Lines 232-241, I cannot follow the conclusions drawn here. First, it is not clear to a reader what the aim of the presented analyses is: what are you looking for when you analyze the vectors? Second, "vector strength" should be briefly explained in the main text. Third, it is not clear how the final conclusion is drawn. If there is a bias of all locations towards the nipple, then a point closer to the nipple cannot exhibit a large bias, because the nipple is close-by. Therefore, one would expect that points close to the nipple exhibit smaller errors, but this would not imply higher acuity - just less space for localizing anything. The higher acuity conclusion is at odds with the remaining results, isn't it: acuity is low on the outer breast, but even lower at the NAC, so why would it be high in between the two?

Thank you for pointing out the circular logic. We have replaced this sentence with a more accurate statement.

“Given these findings, we conclude that the breast has lower tactile acuity than the hand and is instead comparable to the back. Moreover, localization of tactile events to both the back and breast are inaccurate but localizations to the breast are consistently biased towards the nipple.”

The discussion makes some concrete suggestions for sensors in implants (line 283). It is not clear how the stated numbers were computed. Also, why should 4 sensors nipple quadrants receive individual sensors if the result here was that participants cannot distinguish these quadrants?

Thank you for catching this, it should have been 4 sensors for the NAC, not just the nipple. We have fixed this in the text.

I would find it interesting to know whether participants with small breast measurement delta had breast acuity comparable to the back. Alternatively, it would be interesting to know whether breast and back acuity are comparable in men. Such a result would imply that the torso has uniform acuity overall, but any spatial extension of the breast is unaccounted for. The lowest single participant data points in Figure 1B appear similar, which might support this idea.

We agree that this is an interesting question and as you point out, the data does indicate that in cases of minimal expansion acuity may be constant on the torso. However, in the comparison of the JNDs, post-hoc testing revealed no significant difference between the back and either breast region. Consequently, subsampling the group would result in the same result. We have added a sentence to the discussion stating this.

“Consequently, the acuity of the breast is likely determined initially by torso acuity and then any expansion.”

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation