Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnna SchapiroUniversity of Pennsylvania, Philadelphia, United States of America
- Senior EditorJoshua GoldUniversity of Pennsylvania, Philadelphia, United States of America
Reviewer #1 (Public review):
Bredenberg et al. aim to model some of the visual and neural effects of psychedelics via the Wake-Sleep algorithm. This is an interesting study with findings that go against certain mainstream ideas in psychedelic neuroscience (that I largely agree with). I cannot speak to the math in this manuscript, but it seems like quite a conceptual leap to set a parameter of the model in between wake and sleep and state that this is a proxy to acute psychedelic effects (point #20). My other concerns below are related to the review of the psychedelic literature:
(1) Page 1, Introduction, "...they are agonists for the 5-HT2a serotonin receptor commonly expressed on the apical dendrites of cortical pyramidal neurons..." It is a bit redundant to say "5-HT2A serotonin receptor," as serotonin is already captured by its abbreviation (i.e., 5-HT).
While psychedelic research has focused on 5-HT2A expression on cortical pyramidal cells, note that the 5-HT2A receptor is also expressed on interneurons in the medial temporal lobe (entorhinal cortex, hippocampus, and amygdala) with some estimates being >50% of these neurons (https://doi.org/10.1016/j.brainresbull.2011.11.006, https://doi.org/10.1007/s00221-013-3512-6, https://doi.org/10.7554/eLife.66960, https://doi.org/10.1016/j.mcn.2008.07.005, https://doi.org/10.1038/npp.2008.71, https://doi.org/10.1038/s41386-023-01744-8, https://doi.org/10.1016/j.brainres.2004.03.016, https://doi.org/10.1016/S0022-3565(24)37472-5, https://doi.org/10.1002/hipo.22611, https://doi.org/10.1016/j.neuron.2024.08.016). However, with ~1:4 ratio of inhibitory to excitatory neurons in the brain (https://doi.org/10.1101/2024.09.24.614724), this can make it seem as if 5-HT2A expression is negligible in the MTL. I think it might be important to mention these receptors, as this manuscript discusses replay.
I see now that Figure 1 mentions that PV cells also express 5-HT2A receptors. This should probably be mentioned earlier.
(2) Page 1, Introduction, "They have further been used for millennia as medicine and in religious rituals..." This might be a romanticization of psychedelics and indigenous groups, as anthropological evidence suggests that intentional psychedelic use might actually be more recent (see work by Manvir Singh and Andy Letcher).
(3) When discussing oneirogens, it could be worth differentiating psychedelics from kappa opioid agonists such as ibogaine and salvinorin A, another class of hallucinogens that some refer to as "oneirogens" (similar to how "psychedelic" is the colloquial term for 5-HT2A agonists). Note that studies have found the effects of Salvia divinorum (which contains salvinorin A) to be described more similarly to dreams than psychedelics (https://doi.org/10.1007/s00213-011-2470-6). This makes me wonder why the present study is more applicable to 5-HT2A psychedelics than other kappa opioid agonists or other classes of hallucinogens (e.g., NMDA antagonists, muscarinic antagonists, GABAA agonists).
(4) Page 2, Introduction, "Replay sequences have been shown to be important for learning during sleep [14, 15, 16, 17, 18]: we propose that mechanisms supporting replay-dependent learning during sleep are key to explaining the increases in plasticity caused by psychedelic drug administration." I'm not sure I follow the logic of this point. Dreams happen during REM sleep, whereas replay is most prominent during non-REM sleep. Moreover, while it's not clear what psychedelics do to hippocampal function, most evidence would suggest they impair it. As mentioned, most 5-HT2A receptors in the hippocampus seem to be on inhibitory neurons, and human and animal work finds that psychedelics impair hippocampal-dependent memory encoding (https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455, https://doi.org/10.3389/fnbeh.2014.00180, https://doi.org/10.1002/hipo.22712). One study even found that psilocin impairs hippocampal-dependent memory retrieval (https://doi.org/10.3389/fnbeh.2014.00180). Note that this is all in reference to the acute effects (psychedelics may post-acutely enhance hippocampal-dependent memory, https://doi.org/10.1007/s40265-024-02106-4).
(5) Page 2, Introduction, "In total, our model of the functional effect of psychedelics on pyramidal neurons could provide a explanation for the perceptual psychedelic experience in terms of learning mechanisms for consolidation during sleep..." In contrast to my previous point, I think this could be possible. Three datasets have found that psychedelics may enhance cortical-dependent memory encoding (i.e., familiarity; https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455), and two studies found that post-encoding administration of psychedelics retroactively enhanced memory that may be less hippocampal-dependent/more cortical-dependent (https://doi.org/10.1016/j.neuropharm.2012.06.007, https://doi.org/10.1016/j.euroneuro.2022.01.114). Moreover, and as mentioned below, 5 studies have found decoupling between the hippocampus and the cortex (https://doi.org/10.3389/fnhum.2014.00020, https://doi.org/10.1002/hbm.22833, https://doi.org/10.1016/j.celrep.2021.109714, https://doi.org/10.1162/netn_a_00349, https://doi.org/10.1038/s41586-024-07624-5), something potentially also observed during REM sleep that is thought to support consolidation (https://doi.org/10.1073/pnas.2123432119). These findings should probably be discussed.
(6) Page 2, Introduction, "In this work, we show that within a neural network trained via Wake-Sleep, it is possible to model the action of classical psychedelics (i.e. 5-HT2a receptor agonism)..." Note that 5-HT2A agonism alone is not sufficient to explain the effects of psychedelics, given that there are 5-HT2A agonists that are non-hallucinogenic (e.g., lisuride).
(7) Page 2, Introduction, "...by shifting the balance during the wake state from the bottom-up pathways to the top-down pathways, thereby making the 'wake' network states more 'dream-like'." I could have included this in the previous point, but I felt that this idea deserved its own point. There has been a rather dogmatic assertion that psychedelics diminish top-down processing and/or enhance bottom-up processing, and I appreciate that the authors have not accepted this as fact. However, because this is an unfortunately prominent idea, I think it ought to be fleshed out more by first mentioning that it's one of the tenets of REBUS. REBUS has become a popular model of psychedelic drug action, but it's largely unfalsifiable (it's based on two unfalsifiable models, predictive processing and integrated information theory), so the findings from this study could tighten it up a bit. Second, there have now been a handful of studies that have attempted to study directionality in information flow under psychedelics, and the findings are rather mixed including increased bottom-up/decreased top-down effects (https://doi.org/10.7554/eLife.59784, https://doi.org/10.1073/pnas.1815129116; note that the latter "bottom-up" effect involves subcortical-cortical connections in which it's less clear what's actually "higher-/lower-level"), increased top-down/decreased bottom-up effects (https://doi.org/10.1038/s41380-024-02632-3, https://doi.org/10.1016/j.euroneuro.2016.03.018), or both (https://doi.org/10.1016/j.neuroimage.2019.116462, https://doi.org/10.1016/j.neuropharm.2017.10.039), though most of these studies are aggregating across largely inhomogeneous states (i.e., resting-state). Lastly, and somewhat problematically, facilitated top-down processing is also an idea proposed in psychosis that's based partially on findings with acute ketamine administration (note that all hallucinations to some degree might rely on top-down facilitation, as a hallucination involves a high-level concept that impinges on lower-level sensory areas; see work by Phil Corlett). While psychosis and the effects of ketamine have some similarities with psychedelics, there are certainly differences, and I think the goal of this manuscript is to uniquely describe 5-HT2A psychedelics (again, I'm left wondering why tweaking alpha in the Wake-Sleep algorithm is any more applicable to psychedelics than other hallucinogenic conditions).
(8) Figure 2 equates alpha with a "psychedelic dose," but this is a bit misleading, as neither the algorithm nor an individual was administered a psychedelic. Alpha is instead a hypothetical proxy for a psychedelic dose. Moreover, if the model were recapitulating the effects of psychedelics, shouldn't these images look more psychedelic as alpha increases (e.g., they may look like images put through the DeepDream algorithm).
(9) Page 11, Methods, "...and the gate α ensures that learning only occurs during sleep mode... The (1 − α) gate in this case ensures that plasticity only occurs during the Wake mode." Much of the math escapes me, so perhaps I'm misunderstanding these statements, but learning and plasticity certainly happen during both wake and sleep, making me wonder what is meant by these statements. Moreover, if plasticity is simply neural changes, couldn't plasticity be synonymous with neural learning? Perhaps plasticity and learning are meant to refer to different types of neural changes. It might be worth clarifying this, as a general problem in psychedelic research is that psychedelics are described as facilitating plasticity when brains are changing at every moment (hence not experiencing every moment as the same), and psychedelics don't impact all forms of plasticity equally. For example, psychedelics may not necessarily enhance neurogenesis or the addition of certain receptor types, and they impair certain forms of learning (i.e., episodic memory encoding). What is typically meant by plasticity enhancements induced by psychedelics (and where there's the most evidence) is dendritic plasticity (i.e., the growth of dendrites and spines). Whatever is meant by "plasticity" should be clarified in its first instance in this manuscript.
(10) Page 12, Methods, "During training, neural network activity is either dominated entirely by bottom-up inputs (Wake, α = 0) or by top-down inputs (Sleep, α = 1)." Again, I could be misunderstanding the mathematical formulation, but top-down inputs operate during wake, and bottom-up inputs can operate during sleep (people can wake up or even incorporate noise from their environments into sleep.
(11) Page 4, Results, "Thus, we can capture the core idea behind the oneirogen hypothesis using the Wake-Sleep algorithm, by postulating that the bottom-up basal synapses are predominantly driving neural activity during the Wake phase (when α is low)." However, several pieces of evidence (and the first circuit model of psychedelic drug action) suggest that psychedelics enhance functional connectivity and potentially even effective connectivity from the thalamus to the cortex (https://doi.org/10.1093/brain/awab406). Note that psychedelics may not equally impact all subcortical structures. REBUS proposes the opposite of the current study, that psychedelics facilitate bottom-up information flow, with one of the few explicit predictions being that psychedelics should facilitate information flow from the hippocampus to the default mode network. However, as mentioned earlier, 5 studies have found that psychedelics diminish functional connectivity between the hippocampus and cortex (including the DMN but also V1).
(12) Page 4, Results, "...and have an excitatory effect that positively modulates glutamatergic transmission..." Note that this may not be brainwide. While psychedelics were found to increase glutamatergic transmission in the cortex, they were also found to decrease hippocampal glutamate (consistent with inhibition of the hippocampus, https://doi.org/10.1038/s41386-020-0718-8).
(13) Page 5, "...which are similar to the 'breathing' and 'rippling' phenomena reported by psychedelic drug users at low doses..." Although it's sometimes unclear what is meant by "low doses," the breathing/rippling effect of psychedelics occurs at moderate and high doses as well.
(14) I watched the videos, and it's hard for me to say there was some stark resemblance to psychedelic imagery. In contrast, for example, when the DeepDream algorithm came out, it did seem to capture something quite psychedelic.
(15) Page 5, "This form of strongly correlated tuning has been observed in both cortex and the hippocampus." If this has been observed under non-psychedelic conditions, what does this tell us about this supposed model of psychedelics?
(16) Page 6, with regards to neural variability, "...but whether this phenomenon [increased variability] is general across tasks and cortical areas remains to be seen." First, is variability here measured as variance? In fMRI datasets that have been used to support the Entropic Brain Hypothesis, note that variance tends to decrease, though certain measures of entropy increase (e.g., Figure 4A here https://doi.org/10.1073/pnas.1518377113 shows global variance decreases, and this reanalysis of those data https://doi.org/10.1002/hbm.23234 finds some entropy increases). Thus, variance and entropy should not be confused (in theory, one could cycle through several more brain states that are however, similar to each other, which would produce more entropy with decreased variance). Second, and perhaps more problematically for the EBH, is that the entropy effects of psychedelics completely disappear when one does a task, and unfortunately, the authors of these findings have misinterpreted them. What they'll say is that engaging in boring cognitive tasks or watching a video decreases entropy under psychedelics, but what you can see in Figure 1b of https://doi.org/10.1021/acschemneuro.3c00289 and Figure 4b of https://doi.org/10.1038/s41586-024-07624-5 is that entropy actually increases under sober conditions when you do a task. That is, it's a rather boring finding. Essentially, when resting in a scanner while sober, many may actually rest (including falling asleep, especially when subjects are asked to keep their eyes closed), and if you perform a task, brain activity should become more complex relative to doing nothing/falling asleep. When under a psychedelic, one can't fall asleep and thus, there's less change (though note that both of the above studies found numerical increases when performing tasks). Lastly, again I should note that the findings of the present study actually go against EBH/REBUS, given that the findings are increased top-down effects when EBH/REBUS predicts decreased top-down/increased bottom-up effects.
(17) Page 6, "Because psychedelic drug administration increases influence of apical dendritic inputs on neural activity in our model, we found that silencing apical dendritic activity reduced across stimulus neural variability more as the psychedelic drug dose increases." I again want to point out that alpha is not the equivalent of a psychedelic dose here, but rather a parameter in the model that is being proposed as a proxy.
(18) Page 8, "Experimentally, plasticity dynamics which could, theoretically, minimize such a prediction error have been observed in cortex [66, 67], and it has also been proposed that behavioral timescale plasticity in the hippocampus could subserve a similar function [68]. We found that plasticity rules of this kind induce strong correlations between inputs to the apical and basal dendritic compartments of pyramidal neurons, which have been observed in the hippocampus and cortex [55, 56]." Note that the plasticity effects of psychedelics are sometimes not observed in the hippocampus or are even observed as decreases (reviewed in https://doi.org/10.1038/s41386-022-01389-z).
(19) Page 9, as is mentioned, REBUS proposes that there should be a decrease in top-down effects under psychedelics, which goes against what is found here, but as I describe above, the effects of psychedelics on various measures of directionality have been quite mixed.
(20) Unless I'm misunderstanding something, it seems to be a bit of a jump to infer that simply changing alpha in your model is akin to psychedelic dosing. Perhaps if the model implemented biologically plausible 5-HT2A expression and/or its behavior were constrained by common features of a psychedelic experience (e.g., fractal-like visuals imposed onto perception, inability to fall asleep, etc.), I'd be more inclined to see the parallels between alpha and psychedelics dosing. However, it would still need to recapitulate unique effects of psychedelics (e.g., impairments in hippocampal-dependent memory with sparing/facilitation of cortical memory). At the moment, it seems like whatever the model is doing is applicable to any hallucinogenic drug or even psychosis.
Reviewer #2 (Public review):
This work is a nice contribution to the literature in articulating a specific, testable theory of how psychedelics act to generate hallucinations and plasticity. The connection to replay, however - including in the title, abstract, and framing throughout the paper - is not well fleshed out.
In particular, the paper's framing seems to conflate replay, dreams, and top-down processing, but these are not one and the same. Picard-Delano et al. TICS 2023 provides a useful review of the differences between replay and dreams. One key point is that most replay has been observed during NREM sleep, but our canonically bizarre / vivid dreams occur during REM. Top-down connections have also been proposed to be used for many processes aside from replay. The paper would benefit from much more precision and nuance on these points.
I believe the paper is missing demonstrations or speculation about how plasticity under various doses of psychedelics relates to changes in performance, which would be an important link to the replay-dependent learning literature.
Are there renderings available for 'ripple' effects of psychedelics that could be included, to allow readers to compare the model's hallucinations to humans'? Short of this, it would be useful to have a more detailed description of what rippling is. (For those readers without firsthand knowledge!) It is currently difficult to assess how close the match is.