Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBelinda NicolauMcGill University, Montreal, Canada
- Senior EditorEduardo FrancoMcGill University, Montreal, Canada
Joint Public Review:
Summary:
The authors have conducted the largest to date Mendelian Randomization (MR) analysis of the association between genetically predicted measures of adiposity and risk of head and neck cancer (HNC) overall and by subsites within HNC. MR uses genetic predictors of an exposure, such as gene variants associated with high BMI or tobacco use, rather than data from individual physical exams or questionnaires, and if it can be done in its idealized state, there should be no problems with confounding. Traditional epidemiologic studies have reported a variety of associations between BMI (and a few other measures of adiposity) and risk of HNC that typically differ by the smoking status of the subjects. Those findings are controversial given the complex relationship between tobacco and both BMI and HNC risk. Tobacco smokers are often thinner than non-smokers, so this could create an artificial ('confounded') association that may not be fully adjusted away in risk models. The findings of a BMI-HNC association are often attributed to residual confounding, and this seems ripe for an MR approach if suitable genetic instrumental variables can be created. Here, the authors built a variety of genetic instrumental variables for BMI and other measures of adiposity, as well as two instrumental variables for smoking habits, and then tested their hypotheses in a large case-control set of HNC and controls with genetic data.
The authors found that the genetic model for BMI was associated with HNC risk in simple models, but this association disappeared when using models that better accounted for pleiotropy, the condition when genetic variants are associated with more than one trait, such as both BMI and tobacco use. When they used both adiposity and tobacco use genetic instruments in a single model, there was a strong association with genetically predicted tobacco use (as is expected), but there was no remaining association with genetic predictors of adiposity. They conclude that high BMI/adiposity is not a risk factor for HNC.
Strengths:
The primary strength was the expansive use of a variety of different genetic instruments for BMI/adiposity/body size, along with employing a variety of MR model types, several of which are known to be less sensitive to pleiotropy. They also used the largest case-control sample size to date.
Weaknesses:
The lack of pleiotropy is an unconfirmable assumption of MR, and the addition of those models is therefore quite important, as this is a primary weakness of the MR approach. Given that concern, I read the sensitivity analyses using pleiotropy-robust models as the main result, and in that case, they can't test their hypotheses as these models do not show a BMI instrumental variable association. The other weakness, which might be remedied, is that the power of the tests here is not described. When a hypothesis is tested with an under-powered model, the apparent lack of association could be due to inadequate sample size rather than a true null. Typically, when a statistically significant association is reported, power concerns are discounted as long as the study is not so small as to create spurious findings. That is the case with their primary BMI instrumental variable model - they find an association so we can presume it was adequately powered. But the primary models they share are not the pleiotropy-robust methods MR-Egger, weighted median, and weighted mode. The tests for these models are null, and that could mean a couple of things: (1) the original primary significant association between the BMI genetic instrument was due to pleiotropy, and they therefore don't have a robust model to explore the effects of the tobacco genetic instrument. (2) The power for the sensitivity analysis models (the pleiotropy-robust methods) is inadequate, and the authors share no discussion about the relative power of the different MR approaches. If they do have adequate power, then again, there is no need to explore the tobacco instrument.
Reviewing Editor Comments:
We suggest that the authors add power estimates to assess whether the sample size is sufficient, given the strength and variability of the genetic instruments. It would also be helpful to present effect estimates for the tobacco instruments alone, to clarify their independent contribution and improve the interpretation of the joint models. In addition, the role of pleiotropy should be addressed more clearly, including which model is considered primary. Stratified analyses by smoking status are encouraged, as prior studies indicate that BMI-HNC associations may differ between smokers and non-smokers. Finally, the comparison with previous studies should be revised, as most reported null findings without accounting for tobacco instruments. If this study finds an association, it should not be framed as a replication.