Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMeet ZandawalaUniversity of Nevada Reno, Reno, United States of America
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
The authors investigate the role of different specific dopaminergic neurons in the mushroom body of Drosophila larvae for learning and innate behavior. All the tested neurons are thought to be involved in punishment learning. The authors discover that artificial activation of single DANs in training leads to safety learning, but not punishment learning. Furthermore, activation of single DANs can lead to changes in locomotion behavior, which can affect light preference. The authors provide a deeper understanding of the functional diversity of single dopamine neurons; however, it is unclear how translatable these findings are to learning experiments with real punishment stimuli.
Strengths:
The authors attempt to disentangle what kind of memories are formed with the activation of different dopamine neurons - safety learning, and punishment learning, will the US be required to test for recall or not? They do indeed find differences and the results will be of interest to the learning and memory community.
Interestingly, optogenetic activation of a single DAN during training leads to safety memory, but not punishment memory. Furthermore, DAN activation also affects innate locomotion, and the authors can show that optogenetic activation of different DANs affects locomotion differently.
Weaknesses:
All experiments in the manuscript use optogenetic activation of DANs, thus it is not clear what kind of memories are formed. Several stimuli can be used as punishment, such as electric shock, salt, bitter, and light - it is not clear what kind of memory the authors investigate here. The findings could be discussed in the context of what DANs respond to. Furthermore, studies in adults and larvae showed that most DANs can code for both valences - etc., aversive DANs can be activated by punishment, and inhibited by reward. Thus, safety learning might be a result of a decrease in activity in DANs during odor presentation. The authors also do not discuss possible feedback loops from MBONs to DANs across compartments. Could such connections allow for safety learning in larvae?
The authors show that artificial activation with different light intensities can form different memories and that increasing the light intensity sometimes leads to no memories. Also, using different optogenetic tools reveals different results. This again raises the question of how applicable the results will be for learning with real stimuli. Is there a natural stimulus that only induces safety learning, but no punishment learning?
The authors provide a detailed behavioral analysis of locomotion behavior; however, the detailed analysis seems unnecessary for that dataset. Modulation of speed and bending rate has been described before with simpler methods (specifically for MBONs). The revealed locomotion phenotypes probably affect larval locomotion during memory recall with light activation, thus the authors should show that larvae are potentially able to move during light-on memory tests.
Reviewer #2 (Public review):
Summary:
This study provides valuable context for ongoing research on the role of dopamine in memory and locomotion. DANs have been a fascinating area of study due to their complexity, and this work dissects specific DANs, exploring their roles in different memory-related behaviors while offering some explanations. The discussions provided by the authors effectively situates the study in the broader field of learning, memory, DAN circuitry and behavioral computation in insect brains. The study achieves what it sets out to and it does so unequivocally. The experiments were elegantly designed, leaving little room for doubt in the study's claims. However, the study lacks context regarding the molecular pathways underlying these results. While it strengthens current knowledge by providing robust evidence, it does little to explore the molecular mechanisms behind these effects.
Strengths:
(1) Experiment design is one of the strengths of this study. The experiments are thorough and cover the length and breadth of the core findings of the study. Although a lot of work has already been done in studying the role of dopamine in memory and locomotion, the dissection of the functions of distinct DANs in larvae has been done meticulously with well-structured experiments.
(2) This study fits quite nicely into the puzzle of memory, especially in the context of Dopamine. Previous studies in *Drosophila* adults have shown the opposing roles of DANs in locomotion depending on the context of DAN activation. This study drives that point home for larvae, providing conclusive evidence in that regard.
(3) The use of clear figures and simple language is one of the strengths of this paper. The figures are comprehensive, complete and manage to narrate the story by themselves. The flow of information is smooth. The simple and effective language used maintains scientific rigor while remaining accessible to those new to the field. A pleasant read.
Weaknesses:
(1) The authors have done a great job at structuring the figures. But some main figures would benefit from including the controls instead of placing them in supplementary.
(2) The paper would benefit from a deeper discussion regarding molecular mechanisms underlying their results. It would be interesting to see what the authors think about different Dopamine receptors and how they relate to the findings of this paper.
(3) Throughout the paper, the authors have been clear and comprehensive, but in some cases, further explanation of their choices were missing. For example, the choice to compare bending and tail velocity over other parameters within the same clusters is unclear.
Reviewer #3 (Public review):
Summary
Across species, dopamine release carries out seemingly diverse functions, like reinforcing memories and regulating locomotion and flight. However, whether distinct dopaminergic neurons (DANs) are allocated for each function is not clear. In this study, Toshima et al. have used the numerically simple organization of the Drosophila larval brain to answer this question. They use optogenetic activation to systematically stimulate a small set of DANs, individually and collectively, and study the effect on diverse functions such as memory formation, retrieval, and locomotion. They find that singly or collectively, DL1 DANs can induce punishment and/or safety memory formation and retrieval. DANs can even gate the expression of memory. Finally, the same DANs also modulate locomotion in the larvae. The authors speculate that dopaminergic neurons in other species may also share such overlapping functions. Their findings are nicely summarised in Figure 9.
Strengths
The study comprehensively activates the neurons in the DL1 cluster in a systematic manner. Individual and collective stimulation of the Dl1 DANs has been conducted to assess the induction and gating of aversive punishment memory, safety memory, and acute locomotion.
Specific adult Drosophila DANs are known to induce dual behaviors and functions. The same MP1/y1pedc DANs are recognized for gating appetitive memory expression and representing aversive teaching signals downstream of sensory stimuli such as electric shocks, bitter tastes, and heat. Neurons in the PPL1 cluster regulate adult flight and food-seeking behavior. The authors deserve credit for conducting an organized examination of dopaminergic neuron functions in larvae, which makes their findings more comparable and facilitates the proposal of a holistic model.
They have provided substantial evidence for their findings and frequently presented replicated behavioral data sets. They have been transparent about results that were difficult to explain. Additionally, they have provided an impressive body of supporting data to strengthen their main findings.
Weaknesses
The larvae exhibit directed locomotory action to express punishment or safety memory. If the larvae did not move, we would not be able to assess memory function. Hence, functional activation of DANs could result in one action, which seems like two different functions of memory expression and locomotion. It can also be argued that activation of DANs represents a teaching signal to the KCs, and then eventually, downstream of the MBONs, it results in locomotion modulation. Hence, the seeming functional diversity could be a function of different downstream neuronal pathways and not molecular context-dependent diversity inside dopaminergic neurons. The authors should address this possibility or point out the fallacy in the above argument.
The finding that activation of TH-GAL4 conveys aversive valence and R58E02-GAL4 conveys appetitive valence seems redundant (Figure 6). I understand they say this in the context of locomotion. However, they may not have mentioned similar findings in adults. In adults, artificial activation of DANs covered by the same GAL4 lines acts as aversive and appetitive teaching signals for memory formation. These references should be cited appropriately in the results and discussion if not currently included.
The evidence for the role of dopamine (Figure 7) can be bolstered by using other available RNAi lines against TH. A valium20 vector-based shRNA line is recommended. The current evidence is based mainly on non-specific pharmacological intervention with 3IY.