Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMychael LourencoUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Senior EditorVolker DötschGoethe University Frankfurt, Frankfurt am Main, Germany
Reviewer #1 (Public review):
The manuscript by Ivan et al aimed to identify epitopes on the Abeta peptide for a large set of anti-Abeta antibodies, including clinically relevant antibodies. The experimental work was well done and required a major experimental effort including peptide mutational scanning, affinity determinations, molecular dynamics simulations, IP-MS, WB and IHC. The first part of the work is focused on an assay in which peptides (15-18-mers) based on the human Abeta sequence, including some containing known PTMs, are immobilized, thus preventing aggregation and for this reason provide limited biologically-relevant information. Although some results are in agreement with previous experimental structural data (e.g. for 3D6), and some responses to disease-associated mutations were different when compared to wild-type sequences (e.g. in the case of Aducanumab) - which may have implications for personalized treatment. On the other hand, the contribution of conformation (as in oligomers and large aggregates) in antibody recognition patterns was took into consideration in the second part of the study, in which both full-length Abeta in monomeric or aggregated forms and human CSF was employed to investigate the differential epitope interaction between Aducanumab, donanemab and lecanemab. Interestingly, these results confirmed the expected preference of these antibodies for aggregated Abeta. Overall, I understand that the work is of interest to the field.
Comments on revisions:
I have no additional recommendations.
Author response:
The following is the authors’ response to the original reviews
Reviewer #1 (Public review):
The manuscript by Ivan et al aimed to identify epitopes on the Abeta peptide for a large set of anti-Abeta antibodies, including clinically relevant antibodies. The experimental work was well done and required a major experimental effort, including peptide mutational scanning, affinity determinations, molecular dynamics simulations, IP-MS, WB, and IHC. Therefore, it is of clear interest to the field. The first part of the work is mainly based on an assay in which peptides (15-18-mers) based on the human Abeta sequence, including some containing known PTMs, are immobilized, thus preventing aggregation. Although some results are in agreement with previous experimental structural data (e.g. for 3D6), and some responses to diseaseassociated mutations were different when compared to wild-type sequences (e.g. in the case of Aducanumab) - which may have implications for personalized treatment - I have concerns about the lack of consideration of the contribution of conformation (as in small oligomers and large aggregates) in antibody recognition patterns. The second part of the study used fulllength Abeta in monomeric or aggregated forms to further investigate the differential epitope interaction between Aducanumab, Donanemab, and Lecanemab (Figures 5-7). Interestingly, these results confirmed the expected preference of these antibodies for aggregated Abeta, thus reinforcing my concerns about the conclusions drawn from the results obtained using shorter and immobilized forms of Abeta. Overall, I understand that the work is of interest to the field and should be published without the need for additional experimental data. However, I recommend a thorough revision of the structure of the manuscript in order to make it more focused on the results with the highest impact (second part).
We thank the reviewer for highlighting this critical aspect. Our rationale for beginning with the high-resolution, aggregation-independent peptide microarray was to systematically dissect sequence requirements, including PTMs, truncations, and elongations, at single–amino acid resolution. This platform defines linear epitope preferences without the confounding influence of aggregation and enabled analyses that would not have been technically feasible with fulllength Aβ. This rationale is now clarified in the Introduction (lines 72–77).
At the same time, the physiological relevance of antibody binding can only be assessed in the context of aggregation. Prompted by the reviewer’s comments, we restructured the manuscript to foreground the full-length, aggregation-dependent data (Figures 5–7). These assays demonstrate that Aducanumab preferentially recognizes aggregated peptide over monomers and that pre-adsorption with fibrils, but not monomers, blocks tissue reactivity (lines 585–599; Fig. 5B). They also show that Lecanemab can capture soluble Aβ in CSF by IP-MS (lines 544–547; Fig. 4B, Fig. 6–Supplement 1), and that Donanemab strongly binds low-molecular-weight pyroGlu-Aβ while also recognizing highly aggregated Aβ1-42 (lines 668–684; Fig. 7).
The revised Conclusion now explicitly states the complementarity of the two approaches: microarrays for precise sequence and modification mapping, and full-length aggregation assays for context and physiological relevance (lines 705–714).
Finally, prompted by the reviewer’s feedback, we refined the discussion of therapeutic antibodies to move beyond a descriptive dataset and provide mechanistic clarity. Specifically, the dimerization-supported, valency-dependent binding mode of Aducanumab and the additional structural contributions required for Lecanemab binding to aggregated Aβ are now integrated into the reworked Conclusion (lines 725–741).
Reviewer #2 (Public review):
This paper investigates binding epitopes of different anti-Abeta antibodies. Background information on the clinical outcome of some of the antibodies in the paper, which might be important for readers to know, is lacking. There are no references to clinical outcomes from antibodies that have been in clinical trials. This paper would be much more complete if the status of the antibodies were included. The binding characteristics of aducanumab, donanemab, and Lecanemab should be compared with data from clinical phase 3 studies.
Aducanumab was identified at Neurimmune in Switzerland and licensed to Biogen and Eisai. Aducanumab was retracted from the market due to a very high frequency of the side-effect amyloid-related imaging abnormalities-edema (ARIA-E). Gantenerumab was developed by Roche and had two failed phase 3 studies, mainly due to a high frequency of ARIA-E and low efficacy of Abeta clearance. Lecanemab was identified at Uppsala University, humanized by BioArctic, and licensed to Eisai, who performed the clinical studies. Eisai and Biogen are now marketing Lecanemab as Leqembi on the world market. Donanemab was developed by Ely Lilly and is sold in the US as Kisunla.
We thank the reviewer for this valuable suggestion. In the revised manuscript, we have included a concise overview of the clinical status and outcomes of the therapeutic antibodies in the Introduction. This new section (lines 81–99) summarizes the origins, phase 3 trial outcomes, and current regulatory status of Aducanumab, Lecanemab, and Donanemab, as well as mentioning Gantenerumab as a comparator. Key aspects such as ARIA-E incidence, amyloid clearance efficacy, and regulatory decisions are now referenced to provide the necessary clinical context.
These additions directly link our epitope mapping data with the clinical performance and safety profiles of the antibodies, thereby making the translational implications of our results clearer for both research and therapeutic applications.
Limitations:
(1) Conclusions are based on Abeta antigens that may not be the primary targets for some conformational antibodies like aducanumab and Lecanemab. There is an absence of binding data for soluble aggregated species.
We thank the reviewer for raising this important point. To address the absence of data on soluble aggregated species, we added IP-MS experiments using pooled human CSF as a physiologically relevant source of endogenous Aβ. Lecanemab enriched several endogenous soluble Aβ variants (Aβ1–40, Aβ1–38, Aβ1–37, Aβ1–39, and Aβ1–42), whereas Aducanumab did not yield detectable signals (Figure 4B; lines 544–547). These results directly distinguish between synthetic and patient-derived Aβ and highlight Lecanemab’s capacity to capture soluble Aβ species under biologically relevant conditions.
(2) Quality controls and characterization of different Abeta species are missing. The authors need to verify if monomers remain monomeric in the blocking studies for Figures 5 and 6.
We thank the reviewer for this comment. In Figure 5 we show that pre-adsorption with monomeric Aβ1–42 does not prevent Aducanumab binding, whereas fibrillar Aβ1–42 completely abolishes staining, consistent with Aducanumab’s avidity-driven preference for higher-order aggregates.
For Lecanemab (Figure 6), we observed a partial preference for aggregated Aβ1–42 over HFIP-treated monomeric and low-n oligomeric forms. We note, as now stated in the revised manuscript (lines 622–623), that monomeric preparations may partially re-aggregate under blocking conditions, which represents an inherent limitation of such experiments.
To further address this, we performed additional blocking experiments using shorter Aβ peptides, which are less prone to aggregation. These peptides did not block immunohistochemical staining (Figure 6 – Supplement 1), underscoring that both epitope length and conformational state contribute to Lecanemab binding. This conclusion is also consistent with recent data presented at AAIC 2023.
(3) The authors should discuss the limitations of studying synthetic Abeta species and how aggregation might hide or reveal different epitopes.
We thank the reviewer for this important comment. We now explicitly discuss the limitations of using synthetic Aβ peptides, including that aggregation state can mask or expose epitopes in ways that differ from endogenous species. This discussion has been added in the revised manuscript (lines 737–742).
As noted in our replies to Points (2) and (4) here, and to Reviewer #1, we addressed this experimentally by complementing the high-resolution, aggregation-independent mapping with blocking studies using aggregated and monomeric Aβ preparations, and by validating key findings with IP-MS of human CSF as a physiologically relevant source of soluble Aβ. Together, these complementary approaches mitigate the limitations of synthetic peptides and provide a more comprehensive picture of antibody–Aβ interactions
(4) The authors should elaborate on the differences between synthetic Abeta and patientderived Abeta. There is a potential for different epitopes to be available.
We thank the reviewer for this comment. In the revised manuscript we now discuss how comparisons between synthetic and patient-derived Aβ species reveal additional, likely conformational epitopes that are not accessible in short or monomeric synthetic forms. To address this directly, we performed IP-MS with pooled human CSF. Lecanemab enriched a diverse set of endogenous soluble Aβ1–X species (Aβ1–40, Aβ1–38, Aβ1–37, Aβ1–39, and Aβ1–42), whereas Aducanumab did not yield measurable pull-down (Figure 4B; lines 544– 547). These results emphasize that patient-derived Aβ displays distinct aggregation dynamics and epitope accessibility.
We have expanded on this point in the Conclusion (lines 737–742), underscoring the
importance of integrating both synthetic and native Aβ sources to capture the full range of antibody targets.
Reviewer #1 (Recommendations for the authors):
This revision should prioritize the presentation of results obtained using the full-length Abeta peptide, given its more direct relevance to expected antibody recognition patterns in physiological contexts, and discuss the evidence for using synthetic Abeta.
We thank the reviewer for this recommendation. The revised manuscript now places stronger emphasis on results obtained with full-length Aβ peptides, particularly in Figures 5–7, which analyze binding preferences across monomeric, oligomeric, and fibrillar states (lines 585–599, 609–623, 668–684). We also expanded the Discussion to outline both the rationale and the limitations of using synthetic Aβ. The microarray approach provides high-resolution, aggregation-independent sequence and modification mapping, but must be complemented by experiments with full-length Aβ1–42 under physiologically relevant conditions, such as IP-MS from CSF (lines 544–547) and blocking in IHC (lines 585–599, 622–623, 684), to capture conformational epitopes and validate functional relevance.
Figure 6. = Please review/better explain the following statement "Lecanemab recognized Aβ140, Aβ1-42, Aβ3-40, Aβ-3-40 and phosphorylated pSer8-Aβ1-40 on CIEF-immunoassay and Bicine-Tris SDS-PAGE/ Western blot, indicating that the Lecanemabbs epitope is located in the N-terminal region of the Aβ sequence". Is it possible that N-truncated peptides do not form aggregates as efficiently as (or conformationally distinct from) full-length ones?
In the revised text we now clarify that Lecanemab recognized Aβ1-40, Aβ1-42, Aβ3-40, Aβ-340, and phosphorylated pSer8-Aβ1-40 on CIEF-immunoassay (Figure 6A; lines 612–619) and Bicine-Tris SDS-PAGE/Western blot (Figure 6C; lines 639–640). In contrast, shorter Ntruncated variants such as Aβ4-40 and Aβ5-40 did not generate detectable signals under the tested conditions. This is consistent with our initial microarray data (Figure 1), which indicated that Lecanemab binding depends on residues 3–7 of the N-terminus.
On gradient Bistris SDS-PAGE/Western blot, Lecanemab showed a partial but not exclusive preference for aggregated Aβ1-42 over monomeric or low-n oligomeric forms in the HFIPtreated preparation (Figure 6B; lines 632–633). Immunohistochemical detection of Aβ deposits in AD brain sections was efficiently blocked by pre-adsorption with monomerized, oligomeric, or fibrillar Aβ1-42 (Figure 6E; lines 643–645), but not by shorter synthetic peptides such as Aβ1-16, Aβ1-34, or Aβ1-38 (Figure 6 – Supplement 1; lines 654–663).
We also note, as now stated in the Results, that re-aggregation of HFIP-treated Aβ1-42 monomers during incubation cannot be entirely excluded (lines 622–623). Taken together, these experiments indicate that both N-terminal sequence length and conformational context are critical for Lecanemab binding, and that truncated peptides may indeed fail to reproduce the aggregate-associated conformations required for full recognition.
Reviewer #2 (Recommendations for the authors):
Introduction:
(1) Include examples of Lecanemab, donanemab, and gantenerumab, along with relevant references.
We expanded the clinical-context paragraph that already covers Aducanumab, Lecanemab, and Donanemab (lines 81–96) and added Gantenerumab.
(2) Address why gantenerumab was not included in the study.
Due to the focus of our current study on antibodies with recently approved or late-stage clinical use (Aducanumab, Donanemab, Lecanemab), Gantenerumab was not included.
(3) Table 1: Correct the reference for Lecanemab, should be reference 44.
Table 1 has been updated to correct the Lecanemab reference.
(4) Line 84: Add Uppsala University and Eisai alongside Biogen for Lecanemab.
Line 84 has been revised to acknowledge Uppsala University and Eisai alongside Biogen for the development of Lecanemab (lines 90–96).
(5) Line 539: Include the reference: "Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer's Disease. doi: 10.1007/s13311-022-01308-6.
We thank the reviewer for drawing attention to this important reference (now cited as Ref. 83) provides a state-of-the-art comparison of binding profiles of Lecanemab, Aducanumab, and Gantenerumab, and we have now properly incorporated it into our manuscript.
(6) Line 657-659: State that the findings are also applicable to Lecanemab.
Discrepancies between analysis of the short synthetic fragments and the full-length Abeta are now resolved for Aducanumab and Lecanemab and put into context in the results section and the conclusion lines 725-740.
(7) Figures 5 and 6: Discuss how to ensure that monomers remain monomers under the study conditions, considering the aggregation-prone nature of Abeta1-42. This aggregation could impact Lecanemab's binding to "monomers." To our knowledge, Lecanemab does not bind to monomers. The binding properties observed diverge from previously described properties for Lecanemab. Explore reasons for these discrepancies and suggest conducting complementary experiments using a solution-based assay, as per Söderberg et al, 2023. In Figure 6, note that Lecanemab is strongly avidity-driven, potentially causing densely packed monomers to expose Abeta as aggregated, affecting binding interpretation on SDS-PAGE.
We thank the reviewer for this important point. In the revised Results and Discussion we explicitly note that HFIP-treated Aβ1–42 monomers may partially re-aggregate during incubation, which cannot be fully excluded (lines 622–623).
To complement these data, we show that Lecanemab successfully enriched soluble endogenous Aβ species (Aβ1–40, Aβ1–38, Aβ1–37, Aβ1–39, and Aβ1–42) in IP-MS from pooled CSF (lines 544–547; Fig. 4B), demonstrating its ability to bind soluble Aβ under physiologically relevant conditions.
We also now cite the Söderberg et al. (2023, PMID: 36253511) study, which reported weak but detectable binding of Lecanemab to monomeric Aβ (their Fig. 1 and Table 6). This supports our interpretation that Lecanemab is aggregation-sensitive rather than strictly aggregationdependent, in contrast to Aducanumab.
To further address sequence and conformational contributions, we performed blocking experiments with shorter, non-HFIP-treated Aβ peptides (Aβ1–16, Aβ1–34, Aβ1–38). These peptides did not block Lecanemab staining in IHC (lines 654–657; Fig. 6 – Supplement 1), indicating that both extended sequence and conformational context are necessary for recognition.
Finally, our findings are in line with preliminary data by Yamauchi et al. (AAIC 2023, DOI: 10.1002/alz.065104), who proposed that Lecanemab recognizes either a conformational epitope spanning the N-terminus and mid-region, or a structural change in the mid-region induced by the N-terminus.