Low-Frequency Tibial Neuromodulation Increases Voiding Activity - a Human Pilot Study and Computational Model

  1. School of Informatics, University of Edinburgh, School of Informatics, Edinburgh, United Kingdom
  2. School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
  3. Neural Technology Research Center, Iran University of Science and Technology, Tehran, Iran

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Hayriye Cagnan
    Imperial College, London, United Kingdom
  • Senior Editor
    Tamar Makin
    University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

Summary:

The research investigates the frequency-dependent effects of transcutaneous tibial nerve stimulation (TTNS) on bladder function in healthy humans and via a computational model. The authors report that low-frequency (1 Hz) TTNS accelerates the urge to void, while high-frequency (20 Hz) TTNS delays it, corroborated by a computational model suggesting brainstem-mediated mechanisms. The work bridges experimental and theoretical approaches to propose a novel framework for TTNS applications in urinary retention.

Strengths:

(1) The integration of human experiments and computational modeling is a major strength. The model successfully replicates bladder dynamics and provides mechanistic insights into frequency-dependent effects.

(2) Identifies potential therapeutic applications for urinary retention, a condition with limited non-invasive treatments.

(3) Figures are clear and illustrative, and supplementary materials provide essential methodological depth.

(4) Controlled experimental design (eg., single-blinded, fluid/caffeine restrictions, etc), detailed computational model parameters and validation against animal data, transparency in data exclusion criteria and statistical adjustments.

Weaknesses:

(1) The study uses healthy participants; extrapolation to clinical populations (e.g., urinary retention patients) requires validation.

(2) The simulated bladder capacity (100-150 mL) is lower than physiological ranges (300-400 mL). While the authors note this, the impact on model validity should be further addressed.

(3) The model omits nociceptive afferents, limiting its applicability to pathological conditions like overactive bladder.

(4) The lack of significant differences in urge intensity between groups (despite timing differences) warrants deeper discussion. Is the primary effect on efferent activity (as suggested) rather than sensory perception?

(5) One of the highlights of this study is the identification of the effect of low-frequency (1 Hz) tibial nerve stimulation (TNS) on facilitating bladder contraction. Although the authors have clarified this effect in healthy participants, it would strengthen the conclusion if a UAB animal model (e.g., PMCID: PMC7927909, PMC8163611, PMC7847056, PMC8799394) were used to evaluate the same effect.

Reviewer #2 (Public review):

Summary:

Tibial nerve (electrical) stimulation (TNS) has emerged over the past 15 years as a non-invasive method to treat bladder overactivity, but interestingly, new animal work has suggested that TNS could actually be used to excite the bladder when appropriately tuning the stimulation frequency, effectively inverting its effect, perhaps opening the door to treat different conditions (e.g., UAB). The present study tests how healthy people respond to low and high frequency TNS, with the authors showing that they can substantially delay people's first sensation of bladder fullness with high frequencies (20Hz, shown many times before) but also that they can slightly hasten people's first sensation with low frequencies (1Hz, new result in humans). Moreover, the authors develop a computational model of interconnected conductance-based simulated neurons arranged in a physiologically plausible circuit that reproduces some aspects of the frequency-dependent effects of TNS. Their simulations suggest that we might expect low-frequency TNS to also increase the duration of bladder contractions in humans. The study highlights a potential new research direction, optimizing TNS stimulation parameters to increase basal bladder excitability.

Strengths:

The main strength of the work is to call attention to a new possibility of inverting the effect of TNS in humans by manipulating stimulation frequency, opening new indications for the therapy. This is highly relevant because of the recent popularity of TNS and its non-invasiveness, which lends itself to rapid testing and evaluation for new conditions and a high willingness to adopt. The authors convincingly demonstrate a modest excitatory effect on bladder sensation with low-frequency TNS, which clearly warrants further investigation.

The high-level design of the hypotheses, concepts, and experiments is clearly articulated in both the methods and in particularly clear diagrams, letting the reader focus their attention on the most important findings.

It is rare to develop a new computational model of the lower urinary tract at a systems level, and even more so for it to incorporate circuits in the spinal cord and brainstem centers, and this work undoubtedly advances the field's ability to engineer such systems. Further, because the model is comprised of linked conductance-based point-neurons, it is an excellent tool to investigate how an arguably plausible wiring diagram for neural control of the LUT could result in stimulation frequency-dependent effects on pelvic efferents. It is a proof of concept demonstrating how their mechanistic hypothesis of TNS could be implemented neurophysiologically by the nervous system.

Weaknesses:

The main drawback of the work is the frequent overinterpretation of the results. The human study and computational model are both proof-of-principle studies because the experimental effect size and sample size are modest, and the computational model is poorly validated and does not generate physiologically typical cystometric responses in simulations that are designed to recapitulate nominal LUT behavior.

Despite the stated caveats about the small effect in the human study, it should be emphasized throughout that this result is most reasonably interpreted as showing the possibility that TNS can have a low-frequency excitatory effect that merits follow-up, rather than a conclusive demonstration. The effect size is small (as the authors note) and should be placed in context with some minimally clinically important difference, if possible. The result is statistically significant, but even this may be subject to revision due to the small sample and the effect of post-hoc outlier removal and data analysis choices.

Given the apparent mismatch between the model and the cystometric behavior at the systems level in the "normal" case (e.g., low capacity, low voiding efficiency, omitted pressure profiles, frequency, etc.) and the absence of quantitative model validation (e.g., it was not compared directly with any experimental data from human urodynamics or rodent cystometry, beyond the initial fit to the neural data, no sensitivity analyses were performed, no goodness of fit computed, etc.) the discussion should be much more circumspect about interpreting the results at a systems level and should probably contain a paragraph explicitly detailing the limitations of the model. The subsequent interpretation should focus narrowly on the neural circuitry, rather than things like contraction duration, where the model is at its strongest. As written, the authors over-interpret what the in silico study can reasonably be used to infer about LUT function.

More justification is needed for why the contraction duration of the model is the central focus of analysis, when it connects only tentatively to the human study results, which focus on urgency. While not necessarily incorrect, a clearer link or motivation should be offered for how this informs our understanding of frequency-dependent TNS afferent or efferent inhibition during filling (which was the focus of the human studies and the abstract). In other words, why doesn't the model reproduce the 1Hz excitation effect of expediting void onset (or urgency in the human study), and why is it justified to look at contraction duration as a surrogate measure?

The authors claim that "voiding behavior occurred earlier [at 1Hz stim in the model]", pointing to Figure 6A as evidence, but this panel appears to show a single example model run where 1Hz voiding occurs only ~1s earlier (display makes this very hard to estimate). This is insufficient evidence to support the claim. Later, it is stated that "TNS did not ... void much earlier". The claims should be made compatible, and all such claims should have reasonable supporting evidence.

There are a number of reporting concerns that can be easily addressed:

(1) Human Study:

(a) To interpret the human study analysis, a fuller description of the "optional 10m inute extension" is necessary. How were participants presented with this option, how was blinding preserved, what fraction of participants accepted, and did phase 1 results influence their decisions to continue?

(b) For reproducibility, details about the TNS parameters should be articulated, such as the method of determining "motor thresholds" (unless this is synonymous with "urge to urinate"), the shape of the stimulation pulses (e.g., biphasic, charge balanced), typical applied current, etc.

(2) The Computational Model

(a) The code availability statement for this type of work is inadequate. The model used for simulations in this work, as well as the code used to initialize (and randomize synaptic connections), needs to be hosted publicly because i) a model this intricate is extremely hard to reproduce/verify without code, ii) simulations are an essential piece of the argument, iii) hosting code requires very little overhead. Although there is an appropriate level of detail in the model description, it would not be possible to reproduce the model in any reasonable amount of time (or at all) because of the implementation-level details that are, understandably, omitted from the methods (e.g., what is a "unit", what 'exactly' do the connections in the PMC and PAG diagrams relate to, what were the final parameters used for all conductances, which parameters were "matched" to the original papers and which were not, etc.).

b) Critical cystometric/urodynamic values that are typically analyzed to assess healthy LUT function are detrusor pressure (timeseries) and/or post-void residual or voiding efficiency (scalars). These should be included to verify that the model is representative of the "normal" case. This is especially important because the model's "normal" behavior appears to have extremely low voiding efficiency (Figure 6A).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation