Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYanchao BiPeking University, Beijing, China
- Senior EditorYanchao BiPeking University, Beijing, China
Reviewer #1 (Public review):
Functional lateralization between the right and left hemispheres is reported widely in animal taxa, including humans. However, it remains largely speculative as to whether the lateralized brains have a cognitive gain or a sort of fitness advantage. In the present study, by making use of the advantages of domestic chicks as a model, the authors are successful in revealing that the lateralized brain is advantageous in the number sense, in which numerosity is associated with spatial arrangements of items. Behavioral evidence is strong enough to support their arguments. Brain lateralization was manipulated by light exposure during the terminal phase of incubation, and the left-to-right numerical representation appeared when the distance between items gave a reliable spatial cue. The light-exposure induced lateralization, though quite unique in avian species, together with the lack of intense inter-hemispheric direct connections (such as the corpus callosum in the mammalian cerebrum), was critical for the successful analysis in this study. Specification of the responsible neural substrates in the presumed right hemisphere is expected in future research. Comparable experimental manipulation in the mammalian brain must be developed to address this general question (functional significance of brain laterality) is also expected.
Reviewer #2 (Public review):
Summary:
This is the first study to show how a L-R bias in the relationship between numerical magnitude and space depends on brain lateralisation, and moreover, how this is modulated by in ovo conditions.
Strengths:
Novel methodology for investigating the innateness and neural basis of a L-R bias in the relationship between number and space.
Weaknesses:
I would query the way the experiment was contextualised. They ask whether culture or innate pre-wiring determines the 'left-to-right orientation of the MNL [mental number line]'.
The term, 'Mental Number Line' is an inference from experimental tasks. One of the first experimental demonstrations of a preference or bias for small numbers in the left of space and larger numbers in the right of space, was more carefully described as the spatial-numerical association of response codes - the SNARC effect (Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396).
This has meant that the background to the study is confusing. First, they note correctly that many other creatures, including insects can show this bias, though in none of these has neural lateralisation been shown to be a cause. Second, their clever experiment shows that an experimental manipulation creates the bias. If it were innate and common to other species, the experimental manipulation shouldn't matter. There would always be a L-R bias. Third, they seem to be asserting that humans have a left-to-right (L-R) MNL. This is highly contentious, and in some studies, reading direction affects it, as the original study by Dehaene et al showed; and in others, task affects direction (e.g. Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735, not cited). Moreover, a very careful study of adult humans, found no L-R bias (Karolis, V., Iuculano, T., & Butterworth, B. (2011), not cited). Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706). Indeed, Rugani et al claim, incorrectly, that the L-R bias was first reported by Galton in 1880. There are two errors here: first, Galton was reporting what he called 'visualised numerals' and are typically referred to now as 'number forms' - spontaneous and habitual conscious visual representations - not an inference from a number line task. Second, Galton reported right-to-left, circular, and vertical visualised numerals, and no simple left-to-right examples (Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.). So in fact did Bertillon, J. (1880). De la vision des nombres. La Nature, 378, 196-198, and more recently Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J.-A. (1992). Images of numbers, or "When 98 is upper left and 6 sky blue". Cognition, 44, 159-196, and Tang, J., Ward, J., & Butterworth, B. (2008). Number forms in the brain. Journal of Cognitive Neuroscience, 20(9), 1547-1556.
If the authors are committed to chicks' MN Line they should test a series of numbers showing that the bias to left is greater for 2 and 3 than for 4 etc.
What does all this mean? I think that the experiment should absolutely be published in eLife, but the paper should be shorn of its misleading contextualisation, including the term 'Mental Number Line'. The authors also speculate, usefully, on why chicks and other species might have a L-R bias. I don't think the speculations are convincing, but at least if there is an evolutionary basis for the bias, it should at least be discussed.
In fact, I think it would make a very interesting special issue to bring up to date how and why the L-R bias exists, and where and why it does not.
Karolis, V., Iuculano, T., & Butterworth, B. (2011). Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706. doi:10.1037/a0024255
Review of the revised version:
The background and terminology in the text have been significantly altered and clarified: Spatial Numerical Association (SNA) instead of Mental Number Line (MNL) in the text, but with a discussion about how SNA might be the basis of MNL. This entails a link from SNA - a bias - to mental representation of a sequence of numerical magnitudes, which will need to be spelt out in subsequent work with a sequence of numbers rather than a single number, in this case 4. Could the effect be generalised to much larger numbers?
Although the relationship between number and space seems fundamental, the key question is why the L-R SNA bias should exist at all. The authors take on this challenge and make important arguments for the evolutionary advantage of the bias is (see lines 138ff, 375ff, 444ff), though this is likely still to be controversial.
Subsequent work may clarify its interaction of brain lateralisation with culture, notably reading and writing direction (e.g. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396), though this relationship has exceptions and challenges (e.g. Karolis, V., Iuculano, T., & Butterworth, B. (2011). Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706).
For example, would humans with more lateralised brains show a stronger bias? Would humans with reverse lateralisation show a R-L SNA?