Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBrice BathellierCentre National de la Recherche Scientifique, Paris, France
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public review):
Summary:
Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performances on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single-cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescents. Overall, the differences between adolescent and adult neuronal data correlate with the behavior results in showing that learning a difficult task is more challenging for younger mice.
Strengths:
(1) The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across ages. The experiments with optogenetics and novice mice complete the research question in a convincing way.
(2) The analysis, including the systematic comparison of task performance across the two age groups, is most interesting and reveals differences in learning (or learning strategies?) that are compelling.
(3) Neuronal recording during both behavioral training and passive sound exposure is particularly powerful and allows interesting conclusions.
Weaknesses:
(1) The presentation of the paper must be strengthened. Inconsistencies, mislabeling, duplicated text, typos, and inappropriate color code should be changed.
(2) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).
(3) The recording electrodes cover regions in the primary and secondary cortices. It is well known that these two regions process sounds quite differently (for example, one has tonotopy, the other does not), and separating recordings from both regions is important to conclude anything about sound representations. The authors show that the conclusions are the same across regions for Figure 4, but is it also the case for the subsequent analysis? In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas? If this is not the case, how is it compatible with the published literature?
(4) Some analysis interpretations should be more cautious. For example, I do not understand how the lick bias, defined -according to the method- as the inverse normal distribution of the z-score (hit rate) +z-scored (false alarm rate; Figure 1j?, l.749-750), should reflect a cognitive difficulty (l. 161-162, l.171). A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).
Reviewer #2 (Public review):
Summary:
The authors aimed to find out how - and how well - adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds were close in frequency and thus difficult to distinguish, and could, at least in part, be attributed to the younger mice's inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.
Strengths:
The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation, and high-density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.
Weaknesses:
For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them. The results of the optogenetic manipulation, while very interesting, warrant a more in-depth discussion.
Reviewer #3 (Public review):
Summary:
In this study, Benedikt et al. sought to understand how adolescents and adult mice differ in auditory cortical processing, performance on a go/nogo sound-guided task, and learning. They report that behavioral performance is superior in adults. They also report that neuronal representations of both the acoustic stimulus and behavioral choice are weaker and sluggish in adolescents compared to adults and that these differences were larger in expert mice than in novices. The neural basis of adolescent auditory cognition is an important topic (both clinically and from a basic science perspective) and vastly understudied. However, many aspects of the study fell short, thereby undermining the primary conclusions drawn by the authors. My major concerns are as follows:
(1) The authors report that "adolescent mice showed lower auditory discrimination performance compared to adults" and that this performance deficit was due to (among other things) "weaker cognitive control". I'm not fully convinced of this interpretation, for a few reasons. First, the adolescents may simply have been thirstier, and therefore more willing to lick indiscriminately. The high false alarm rates in that case would not reflect a "weaker cognitive control" but rather, an elevated homeostatic drive to obtain water. Second, even the adult animals had relatively high (~40%) false alarm rates on the freely moving version of the task, suggesting that their behavior was not particularly well controlled either. One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.
(2) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.
(3) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions? And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)