Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDaniel ArangoNorthwestern University, Chicago, United States of America
- Senior EditorAdèle MarstonUniversity of Edinburgh, Edinburgh, United Kingdom
Reviewer #1 (Public review):
Summary:
The study characterises an RNA polymerase (Pol) I mutant (RPA135-F301S) named SuperPol. This mutant was previously shown to increase yeast ribosomal RNA (rRNA) production by Transcription Run-On (TRO). In this work, the authors confirm this mutation increases rRNA transcription using a slight variation of the TRO method, Transcriptional Monitoring Assay (TMA), which also allows the analysis of partially degraded RNA molecules. The authors show a reduction of abortive rRNA transcription in cells expressing the SuperPol mutant and a modest occupancy decrease at the 5' region of the rRNA genes compared to WT Pol I. These results suggest that the SuperPol mutant displays a lower frequency of premature termination. Using in vitro assays, the authors found that the mutation induces an enhanced elongation speed and a lower cleavage activity on mismatched nucleotides at the 3' end of the RNA. Finally, SuperPol mutant was found to be less sensitive to BMH-21, a DNA intercalating agent that blocks Pol I transcription and triggers the degradation of the Pol I subunit, Rpa190. Compared to WT Pol I, short BMH-21 treatment has little effect on SuperPol transcription activity, and consequently, SuperPol mutation decreases cell sensitivity to BMH-21.
I'd suggest the following points to be taken into consideration:
Major comments:
(1) The differences in the transcriptionally engaged WT Pol I and SuperPol profiles (Figure 2) are very modest, without any statistical analyses. What is the correlation between CRAC replicates? Are they separated in PCA analyses? Please, include more quality control information. In my opinion, these results are not very convincing. Similarly, the effect of BMH-21 on WT Pol I activity (Figure 7) is also very subtle and doesn't match the effect observed in a previous study [1]. Could the author comment on the reasons for these differences? These discrepancies raise concerns about the methodology. In addition, according to the laboratory's previous work [2], Pol I ChIP signal at rDNA is not significantly different in cells expressing WT Pol I and SuperPol. How can these two observations be reconciled? I would suggest using an independent methodology to analyse Pol I transcription, for example, GRO-seq or TT-seq.
(2) While the experiments clearly show SuperPol mutant increases nascent transcription and decreases the production of abortive promoter-proximal transcripts compared to WT Pol I. RPA135-F301S mutation has a minor impact on total rRNA levels, at least those shown in Figure 3B. Are steady-state rRNA levels higher in cells expressing SuperPol mutant? It would be interesting to know if SuperPol mutant produces more functional rRNAs.
Significance:
The work further characterises a single amino acid mutation of one of the largest yeast Pol I subunits (RPA135-F301S). While this mutation was previously shown to increase rRNA synthesis, the current work expands the SuperPol mutant characterisation, providing details of how RPA135-F301S modifies the enzymatic properties of yeast Pol I. In addition, their findings suggest that yeast Pol I transcription can be subjected to premature termination in vivo. The molecular basis and potential regulatory functions of this phenomenon could be explored in additional studies.
Our understanding of rRNA transcription is limited, and the findings of this work may be interesting to the transcription community. Moreover, targeting Pol I activity is an open strategy for cancer treatment. Thus, the resistance of SuperPol mutant to BMH-21 might also be of interest to a broader community, although these findings are yet to be confirmed in human Pol I and with more specific Pol I inhibitors in future.
Reviewer #2 (Public review):
Summary:
This article presents a study on a mutant form of RNA polymerase I (RNAPI) in yeast, referred to as SuperPol, which demonstrates increased rRNA production compared to the wild-type enzyme. While rRNA production levels are elevated in the mutant, RNAPI occupancy as detected by CRAC is reduced at the 5' end of rDNA transcription units. The authors interpret these findings by proposing that the wild-type RNAPI pauses in the external transcribed spacer (ETS), leading to premature transcription termination (PTT) and degradation of truncated rRNAs by the RNA exosome (Rrp6). They further show that SuperPol's enhanced activity is linked to a lower frequency of PTT events, likely due to altered elongation dynamics and reduced RNA cleavage activity, as supported by both in vivo and in vitro data.
The study also examines the impact of BMH-21, a drug known to inhibit Pol I elongation, and shows that SuperPol is less sensitive to this drug, as demonstrated through genetic, biochemical, and in vivo approaches. The authors show that BMH-21 treatment induces premature termination in wild-type Pol I, but only to a lesser extent in SuperPol. They suggest that BMH-21 promotes termination by targeting paused Pol I complexes and propose that PTT is an important regulatory mechanism for rRNA production in yeast.
The data presented are of high quality and support the notion that 1) premature transcription termination occurs at the 5' end of rDNA transcription units; 2) SuperPol has an increased elongation rate with reduced premature termination; and 3) BMH-21 promotes both pausing and termination. The authors employ several complementary methods, including in vitro transcription assays. These results are significant and of interest for a broad audience.
Beyond the minor points listed below, my main criticism concerns the interpretation of data in relation to termination. While it is possible that the SuperPol mutation affects the wild-type Pol I's natural propensity for termination, it is also possible that premature termination is simply a consequence of natural or BMH-21-induced Pol I pausing. SuperPol may elongate more efficiently than the wild-type enzyme, pause less frequently, and thus terminate less often. In this light, the notion that termination "regulates" rRNA production might be an overstatement, with pausing as the primary event. Claiming a direct effect on termination by both the mutation and BMH-21 would require showing that with equivalent levels of pausing, termination occurs more or less efficiently, which would be challenging and should not be expected in this study. The authors address this point in the last two paragraphs of the discussion. My suggestion is to temper the claims regarding termination as a regulatory mechanism.
Significance:
These results are significant and of interest for a basic research audience.
Reviewer #3 (Public review):
Summary:
In the manuscript "Ribosomal RNA synthesis by RNA polymerase I is regulated by premature termination of transcription", Azouzi and co-authors investigate the regulatory mechanisms of ribosomal RNA (rRNA) transcription by RNA Polymerase I (RNAPI) in the budding yeast S. cerevisiae. They follow up on exploring the molecular basis of a mutant allele of the second largest subunit of RNAPI, RPA135-F301S, also dubbed SuperPol, that they had previously reported (Darrière et al, 2019), and which was shown to rescue Rpa49-linked growth defects, possibly by increasing rRNA production.
Through a combination of genomic and in vitro approaches, the authors test the hypothesis that RNAPI activity could be subjected to a Premature Transcription Termination (PPT) mechanism, akin to what is observed for RNA Polymerase II (RNAPII), and which is suggested to be an important step for the quality control of rRNA transcripts. SuperPol is proposed to lack such a regulatory mechanism, due to an increased processivity. In agreement, SuperPol is shown to be resistant to BMH-21, a drug previously shown to impair RNAPI elongation.
Overall, the experiments are performed with rigor and include the appropriate controls and statistical analysis. Both the figures and the text present the data clearly. The Material and Methods section is detailed enough. The reported results are interesting; however, I am not fully convinced of the existence of PPT of RNAPI, and even less of its utmost importance.
The existence of PPT of RNAPI would entail an intended regulatory mechanism. The authors propose that PPT could serve as quality control step for the UTP-A complex loading on the rRNA 5'-end. While this hypothesis is enticing and cautiously phrased by the authors, the lack of evidence showing a specific regulatory function (such as UTP-A loading checkpoint or else) limits these termination events to possibly abortive actions of unclear significance.
The authors may want to consider comparisons to other processive alleles, such as the rpb1-E1103G mutant of the RNAPII subunit (Malagon et al, 2006) or the G1136S allele of E. coli RNAP (Bar-Nahum et al., 2005). While clearly mechanistically distinct, these mutations result in similarly processive enzymes that achieve more robust transcription, possibly at the cost of decreased fidelity. Indeed, an alternative possibility explaining these transcripts could be that they originate from unsuccessful resumption of transcription after misincorporation (see below).
I suggest reconsidering the study's main conclusions by limiting claims about the regulatory function of these termination events (the title of the manuscript should be changed accordingly). Alternatively, the authors should provide additional investigation on their regulatory potential, for example by assessing if indeed this quality control is linked to the correct assembly of the UTP-A complex. The expectation would be that SuperPol should rescue at least to some extent the defects observed in the absence of UTP-A components.
Moreover, the results using the clv3 substrate suggest the possibility that SuperPol might simply be more able to tolerate mismatches, thus be more processive in transcribing, because not subjected to proof-reading mechanisms, similarly to what observed in Schwank et al., 2022. This could explain many of the observations, and I think it is worth exploring by assessing the fidelity of the enzyme, especially in the frame of suggesting a regulatory function for these termination events.
Significance:
Azouzi and co-authors' work builds on their previous study (Darrière et al, 2019) of RPA135-F301S (SuperPol), a mutant allele of the second largest RNAPI subunit, which was shown to compensate for Rpa49 loss, potentially by increasing rRNA production. The work advances the mechanistic understanding of the the SuperPol allele, demonstrating the increased processivity of this enzyme compared to its wild-type counterpart. Such increased processivity "desensitizes" RNAPI from abortive transcription cycles, the existence of which is clearly shown, though the biological significance of this phenomenon remains unclear. The lack of evidence for a regulatory mechanism behind these early termination events is, in my opinion, a limitation of this study, as it does not allow for differentiation between an intended regulatory process and a byproduct of an imperfect system.
This work is of interest for researchers studying transcription regulation, particularly those interested in understanding RNAPI's role and fidelity. Demonstrating PPT as a regulatory quality control for RNAPI could point to common strategies in between RNAPI and RNAPII regulation, where premature termination has been extensively documented. However, without evidence of a specific regulatory function, these findings may currently be limited to descriptive insights.