Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
This study provides comprehensive instructions for using the chromatophore tracking software, Chromas, to track and analyse the dynamics of large numbers of cephalopod chromatophores across various spatiotemporal scales. This software addresses a long-standing challenge faced by many researchers who study these soft-bodied creatures, known for their remarkable ability to change colour rapidly. The updated software features a user-friendly interface that can be applied to a wide range of applications, making it an essential tool for biologists focused on animal dynamic signalling. It will also be of interest to professionals in the fields of computer vision and image analysis.
Strengths:
This work provides detailed instructions for this tool kit along with examples for potential users to try. The Gitlab inventory hosts the software package, installation documentation, and tutorials, further helping potential users with a less steep learning curve.
Weaknesses:
The evidence supporting the authors' claims is solid, particularly demonstrated through the use of cuttlefish and squid. However, it may not be applicable to all coleoid cephalopods yet, such as octopuses, which have an incredibly versatile ability to change their body forms.
Comments on revisions:
I am pleased to see the more detailed version of this useful tool along with tutorials designed for diverse users who are interested in animal dynamic colouration. This study provides detailed instructions for using the chromatophore tracking software Chromas to track and analyse the dynamics of large numbers of cephalopod chromatophores across various spatiotemporal scales. The software features a user-friendly interface that is highly compelling and can be applied to a wide range of applications.
Reviewer #2 (Public review):
Summary:
The authors developed a computational pipeline named CHROMAS to track and analyze chromatophore dynamics, which provides a wide range of biological analysis tools without requiring the user to write code.
Strengths:
(1) CHROMAS is an integrated toolbox that provides tools for different biological tasks such as: segment, classify, track and measure individual chromatophores, cluster small groups of chromatophores, analyze full-body patterns, etc.
(2) It could be used to investigate different species. The authors have already applied it to analyze the skin of the bobtail squid Euprymna berryi and the European cuttlefish Sepia officinalis.
(3) The tool is open-source and easy to install. The paper describes in detail the experiment requirements, command to complete each task and provides relevant sample figures, which are easy to follow.
Weaknesses:
(1) There are some known limitations for the current version. The users should read the "Discussion" chapter carefully before preparing their experiments and using CHROMAS.