Multiphase separation in postsynaptic density regulated by membrane geometry via interaction valency and volume

  1. Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Fabrizio Marinelli
    Medical College of Wisconsin, Milwaukee, United States of America
  • Senior Editor
    Qiang Cui
    Boston University, Boston, United States of America

Reviewer #1 (Public review):

Summary:

This study uses mesoscale simulations to investigate how membrane geometry regulates the multiphase organization of postsynaptic condensates. It reveals that dimensionality shifts the balance between specific and non-specific interactions, thereby reversing domain morphology observed in vitro versus in vivo.

Strengths:

The model is grounded in experimental binding affinities, reproduces key experimental observations in 3D and 2D contexts, and offers mechanistic insight into how geometry and molecular features drive phase behavior.

Weaknesses:

The model omits other synaptic components that may influence domain organization and does not extensively explore parameter sensitivity or broader physiological variability.

Reviewer #2 (Public review):

This is a timely and insightful study aiming to explore the general physical principles for the sub-compartmentalization--or lack thereof--in the phase separation processes underlying the assembly of postsynaptic densities (PSDs), especially the markedly different organizations in three-dimensional (3D) droplets on one hand and the two-dimensional (2D) condensates associated with a cellular membrane on the other. Simulation of a highly simplified model (one bead per protein domain) is carefully executed. Based on a thorough consideration of various control cases, the main conclusion regarding the trade-off between repulsive excluded volume interactions and attractive interactions among protein domains in determining the structures of 3D vs 2D model PSD condensates is quite convincing. The results in this manuscript are novel; however, as it stands, there is substantial room for improvement in the presentation of the background and the findings of this work. In particular, (i) conceptual connections with prior works should be better discussed, (ii) essential details of the model should be clarified, and (iii) the generality and limitations of the authors' approach should be better delineated. Specifically, the following items should be addressed (with the additional references mentioned below cited and discussed):

(1) Excluded volume effects are referred to throughout the text by various terms and descriptions such as "repulsive force according to the volume" (e.g., in the Introduction), "nonspecific volume interaction", and "volume effects" in this manuscript. This is somewhat curious and not conducive to clarity, because these terms have alternate or connotations of alternate meanings (e.g., in biomolecular modeling, repulsive interactions usually refer to those with longer spatial ranges, such as that between like charges). It will be much clearer if the authors simply refer to excluded volume interactions as excluded volume interactions (or effects).

(2) Inasmuch as the impact of excluded volume effects on subcompartmentalization of condensates ("multiple phases" in the authors' terminology), it has been demonstrated by both coarse-grained molecular dynamics and field-theoretic simulations that excluded volume is conducive to demixing of molecular species in condensates [Pal et al., Phys Rev E 103:042406 (2021); see especially Figures 4-5 of this reference]. This prior work bears directly on the authors' observation. Its relationship with the present work should be discussed.

(3) In the present model setup, activation of the CaMKII kinase affects only its binding to GluN2Bc. This approach is reasonable and leads to model predictions that are essentially consistent with the experiment. More broadly, however, do the authors expect activation of the CaMKII kinase to lead to phosphorylation of some of the molecular species involved with PSDs? This may be of interest since biomolecular condensates are known to be modulated by phosphorylation [Kim et al., Science 365:825-829 (2019); Lin et al, eLife 13:RP100284 (2025)].

(4) The forcefield for confinement of AMPAR/TARP and NMDAR/GluN2Bc to 2D should be specified in the main text. Have the authors explored the sensitivity of their 2D findings on the strength of this confinement?

(5) Some of the labels in Figure 1 are confusing. In Figure 1A, the structure labeled as AMPAR has the same shape as the structure labeled as TARP in Figure 1B, but TARP is labeled as one of the smaller structures (like small legs) in the lower part of AMPAR in Figure 1A. Does the TARP in Figure 1B correspond to the small structures in the lower part of AMPAR? If so, this should be specified (and better indicated graphically), and in that case, it would be better not to use the same structural drawing for the overall structure and a substructure. The same issue is seen for NMDAR in Figure 1A and GluN2Bc in Figure 1B.

(6) In addition to clarifying Figure 1, the authors should clarify the usage of AMPAR vs TARP and NMDAR vs GluN2Bc in other parts of the text as well.

(7) The physics of the authors' model will be much clearer if they provide an easily accessible graphical description of the relative interaction strengths between different domain-representing spheres (beads) in their model. For this purpose, a representation similar to that given by Feric et al., Cell 165:1686-1697 (2016) (especially Figure 6B in this reference) of the pairwise interactions among the beads in the authors' model should be provided as an additional main-text figure. Different interaction schemes corresponding to inactive and activated CAMKII should be given. In this way, the general principles (beyond the PSD system) governing 3D vs 2D multiple-component condensate organization can be made much more apparent.

(8) Can the authors' rationalization of the observed difference between 3D and 2D model PSD condensates be captured by an intuitive appreciation of the restriction on favorable interactions by steric hindrance and the reduction in interaction cooperativity in 2D vs 3D?

(9) In the authors' model, the propensity to form 2D condensates is quite weak. Is this prediction consistent with the experiment? Real PSDs do form 2D condensates around synapses.

(10) More theoretical context should be provided in the Introduction and/or Discussion by drawing connections to pertinent prior works on physical determinants of co-mixing and de-mixing in multiple-component condensates (e.g., amino acid sequence), such as Lin et al., New J Phys 19:115003 (2017) and Lin et al., Biochemistry 57:2499-2508 (2018).

(11) In the discussion of the physiological/neurological significance of PSD in the Introduction and/or Discussion, for general interest it is useful to point to a recently studied possible connection between the hydrostatic pressure-induced dissolution of model PSD and high-pressure neurological syndrome [Lin et al., Chem Eur J 26:11024-11031 (2020)].

(12) It is more accurate to use "perpendicular to the membrane" rather than "vertical" in the caption for Figure 3E and other such descriptions of the orientation of the CaMKII hexagonal plane in the text.

Reviewer #3 (Public review):

Summary:

In this work, Yamada, Brandani, and Takada have developed a mesoscopic model of the interacting proteins in the postsynaptic density. They have performed simulations, based on this model and using the software ReaDDy, to study the phase separation in this system in 2D (on the membrane) and 3D (in the bulk). They have carefully investigated the reasons behind different morphologies observed in each case, and have looked at differences in valency, specific/non-specific interactions, and interfacial tension.

Strengths:

The simulation model is developed very carefully, with strong reliance on binding valency and geometry, experimentally measured affinities, and physical considerations like the hydrodynamic radii. The presented analyses are also thorough, and great effort has been put into investigating different scenarios that might explain the observed effects.

Weaknesses:

The biggest weakness of the study, in my opinion, has to do with a lack of more in-depth physical insight about phase separation. For example, the authors express surprise about similar interactions between components resulting in different phase separation in 2D and 3D. This is not surprising at all, as in 3D, higher coordination numbers and more available volume translate to lower free energy, which easily explains phase separation. The role of entropy is also significantly missing from the analyses. When interaction strengths are small, entropic effects play major roles.

In the introduction, the authors present an oversimplified view of associative and segregative phase transitions based on the attractive and repulsive interactions, and I'm afraid that this view, in which all the observed morphologies should have clear pairwise enthalpic explanations, diffuses throughout the analysis. Meanwhile, I believe the authors correctly identify some relevant effects, where they consider specific/non-specific interactions, or when they investigate the reduced valency of CaMKII in the 2D system.

Also, I sense some haste in comparing the findings with experimental observations. For example, the authors mention that "For the current four component PSD system, the product of concentrations of each molecule in the dilute phase is in good agreement with that of the experimental concentrations (Table S2)." But the data used here is the dilute phase, which is the remnant of a system prepared at very high concentrations and allowed to phase separate. The errors reported in Table S2 already cast doubt on this comparison. Or while the 2D system is prepared via confining the particles to the vicinity of the membrane, the different diffusive behavior in the membrane, in contrast to the bulk (i.e., the Saffman-Delbrück model), is not considered. This would thus make it difficult to interpret the results of a coupled 2D/3D system and compare them to the actual system.

Author response:

We thank all the reviewers for their thoughtful comments on our submitted manuscript.

The main points made by all three reviewers were: to discuss the components of the omitted synapses and explore parameter sensitivity and broader physiological variability; to provide deeper physical insights into phase separation; to clarify terminology and provide better presentation and context in relation to previous studies.

We fully agree with the first point, suggesting that parameter sensitivity and broader physiological variability should be explored. Our model omits scaffold proteins such as GKAP, Shank and Homer, which are present at the bottom of the PSD hierarchy. In addition, there are many other interactions in PSDs whose affinity is altered by phosphorylation, and the phase separation state of the condensate is likely to be affected by ionic concentration and other environmental factors. We will include a more detailed discussion of these environmental factors and a limitation of our study in the Discussion section. Furthermore, regarding to the sensitivity of the parameters, the reviewer's point that the membrane potential parameter is an important value is right since it directly regulates the difference between 3D and 2D systems. We plan to verify this by changing the strength of the membrane potential, and by running simulations again to see how much it affects the morphology of condensates.

The second point is that we should provide deeper physical insight into phase separation in different dimensions. It would not be straightforward to directly estimate the entropy of the system due to the nature of the model. However, as pointed out, the difference of phase behavior can be elucidated through various simplified theories such as the lattice model. In this context, the reduced coordination number in 2D systems compared to 3D systems, and the decreased pseudo-attractive force due to the depletion effect, can offer rationalizations. We would like to add some theoretical discussion of these aspects with equations.

Third, we will clarify terminology and provide better explanation in relation to previous studies. In some parts in manuscripts, such as complexes containing receptors, there were some disunity in terminology and lack of annotations in figures. We will improve the wording and visualization in the text for further clarity and add relevant references, as suggested by the reviewers.

Also, as additionally suggested, scripts for the simulation and analysis together with the initial structure obtained will be deposited to Zenodo or GitHub.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation