Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorClara AkpanMichael Okpara University of Agriculture, Umudike, Nigeria
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public review):
Summary:
The authors developed SHERLOCK4AAT, a CRISPR-Cas13a-based diagnostic toolbox for detecting multiple trypanosome species responsible for animal African trypanosomiasis. They created species-specific assays targeting six prevalent parasite species and validated the system using dried blood spots from domestic pigs in Guinea and Côte d'Ivoire. Field testing revealed high infection rates (62.7% of pigs infected) and, notably, the presence of human-infective parasites in domestic animals.
Major Strengths:
This study represents a valuable application of CRISPR-based detection technology to veterinary diagnostics, with strong potential for practical implementation. The authors conducted comprehensive validation, including statistical analyses to determine sensitivity and specificity, and demonstrated field utility through large-scale testing of 424 samples from two geographically distinct regions. The detection of human-infective parasites in pigs at both sites provides important One Health insights supporting integrated disease surveillance and has direct implications for public health policy and disease elimination programs. The methodology is robust, incorporating Bayesian statistical modeling and offering clear practical advantages such as dried blood spot compatibility and detection of active infections. The revised manuscript also addresses implementation considerations, including cost, training needs, and field logistics.
Major Weaknesses:
Some technical limitations constrain broader applicability. The assay for one key parasite species (T. vivax) shows suboptimal sensitivity, which may limit its utility in detecting this important pathogen. The current assay design does not distinguish between closely related species within the same subgenus-an important factor for certain epidemiological studies. Additionally, some assays relied on synthetic controls due to unavailable biological material, and the discussion on potential cross-reactivity with related kinetoplastid parasites is limited.
Achievement of Aims: The authors clearly achieved their primary objectives of developing a sensitive, species-specific diagnostic system and demonstrating its applicability in real-world settings. The detection of human-infective trypanosomes in domestic pigs provides valuable epidemiological evidence in support of One Health strategies and targeted disease elimination efforts.
Impact and Utility:
This work responds to a well-documented need in veterinary diagnostics, where current methods often lack sensitivity or species discrimination. The system offers practical benefits for resource-limited settings through a short assay duration and compatibility with dried blood spot samples. While certain performance limitations may restrict broader adoption, the species identification capability represents a substantial advancement over existing approaches. The findings enhance our understanding of parasite diversity in livestock and their potential role as zoonotic reservoirs, with implications extending beyond veterinary medicine to public health surveillance and policy development.
Context:
This study makes a timely and relevant contribution to diagnostic epidemiology and One Health surveillance frameworks. The field-adapted use of advanced molecular detection technologies represents a significant step toward improved disease monitoring in regions where trypanosomiasis poses ongoing threats to animal health, agriculture, and human livelihoods. The cross-disciplinary implications for veterinary medicine, public health, and disease elimination programs underscore the broader significance of this work.
Reviewer #2 (Public review):
Summary:
The manuscript is fundamental due to the significance of its findings. The strength of the evidence is compelling, and the manuscript is publishable since the corrections have been made.
Strengths:
Using a Novel SHERLOCK4AAT toolkit for diagnosis.
Identification of various sub-species of Trypanosomes.
Differentiating the animal sub-species from the human one.
Corrections Made:
Definite articles have been removed from the title.
The words of the title have been reduced to 15.
Typographical errors have been corrected.
Weaknesses:
None
Reviewer #3 (Public review):
Summary:
The study adapts CRISPR-based detection toolkit (SHERLOCK assay) using conserved and species-specific targets for the detection of some members of the Trypanosomatidae family of veterinary importance and species-specific assays to differentiate between the six most common animal trypanosomes species responsible for AAT (SHERLOCK4AAT). The assays were able to discriminate between Trypanozoon (T. b. brucei, T. evansi and T. equiperdum), T. congolense (Savanah, Forest Kilifi and Dzanga sangha), T. vivax, T. theileri, T. simiae and T. suis. The design of both broad and species-specific assays was based primarily on sequences of the 18S rRNA, GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) and invariant flagellum antigen (IFX) genes for species identification. Most importantly the authors showed varying limit of detection for the different SHERLOCK assays which is somewhat comparable to PCR-derived molecular techniques currently used for detecting animal trypanosomes even though some of these methodologies have used other primers that target genes such as ITS1 and 7SL sRNA.
The data presented in the study are particularly useful and of significant interest for diagnosis of AAT in affected areas.
Strengths:
The assays convincingly allow for the analysis and detection of most trypanosomes in AAT
Weaknesses:
Inability for the assay to distinguish T. b. brucei, T. evansi and T. equiperdum using the 18S rRNA gene as well as the IFX gene not achieving the sensitivity requirements for detection of T. vivax. Both T. brucei brucei and T. vivax are the most predominant infective species in animals (in addition to T. congolense), therefore a reliable assay should be able to convincingly detect these to allow for proper use of diagnostic assay.