Weak evidence for heritable changes in response to selection by aphids in Arabidopsis accessions

  1. MWSchmid GmbH, Glarus, Switzerland
  2. Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
  3. Zurich-Basel Plant Science Center, University of Zurich, ETH Zurich, University of Basel, Zurich, Switzerland
  4. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
  5. Department of Geography, University of Zurich, Zurich, Switzerland

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Daniel Zilberman
    Institue of Science and Technology, Klosterneuburg, Austria
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public review):

Summary:

The authors extended a previous study of selective response to herbivory in Arabidopsis, in order to look specifically for selection on induced epigenetic variation ("Lamarckian evolution"). They found no evidence. In addition, the re-examined result from a previously published study arguing that environmentally induced epigenetic variation was common, and found that these findings were almost certainly artifactual.

Strengths:

The paper is very clearly written, there is no hype, and the methods used are state-of-the-art.

Weaknesses:

The result is negative, so the best you can do is put an upper bound on any effects.

Significance:

Claims about epigenetic inheritance and Lamarckian evolution continue to be made based on very shaky evidence. Convincing negative results are therefore important. In addition, the study presents results that, to this reviewer, suggest that the 2024 paper by Lin et al. [26] should probably be retracted.

Reviewer #2 (Public review):

In this paper, the authors examine the extent to which epigenetic variation acquired during a selection treatment (as opposed to standing epigenetic variation) can contribute to adaptation in Arabidopsis. They find weak evidence for such adaptation and few differences in DNA methylation between experimental groups, which contrasts with another recent study (reference 26) that reported extensive heritable variation in response to the environment. The authors convincingly demonstrate that the conclusions of the previous study were caused by experimental error, so that standing genetic variation was mistaken for acquired (epigenetic) variation. Given the controversy surrounding the possible role of epigenetic variation in mediating phenotypic variation and adaptation, this is an important, clarifying contribution.

I have a few specific comments about the analysis of DNA methylation:

(1) The authors group their methylation analysis by sequence context (CG, CHG, CHH). I feel this is insufficient, because CG methylation can appear in two distinct forms: gene body methylation (gbM), which is CG-only methylation within genes, and transposable element (TE) and TE-like methylation (teM), which typically involves all sequence contexts and generally affects TEs, but can also be found within genes. GbM and teM have distinct epigenetic dynamics, and it is hard to know how methylation patterns are changing during the experiment if gbM and teM are mixed. This can also have downstream consequences (see point below).

(2) For GO analysis, the authors use all annotated genes as a control. However, most of the methylation differences they observe are likely gbM, and gbM genes are not representative of all genes. The authors' results might therefore be explained purely as a consequence of analyzing gbM genes, and not an enrichment of methylation changes in any particular GO group.

Author response:

We thank you and the reviewers very much for the insightful comments on our manuscript. We plan to revise the manuscript as follows:

(A) As suggested by Reviewer 1, we will carefully read through the entire manuscript and try to improve its clarity. Regarding the comments and recommendations from Reviewer 2, we plan to address the first recommendation and the specific comments about the analysis of DNA methylation. We can currently not address the second recommendation because the person responsible for gathering the data works at a different university now. However, we keep this in mind for future projects.

(B) Regarding the two main comments of Reviewer 2, we plan the following:

(1) The authors group their methylation analysis by sequence context (CG, CHG, CHH). I feel this is insufficient, because CG methylation can appear in two distinct forms: gene body methylation (gbM), which is CG-only methylation within genes, and transposable element (TE) and TE-like methylation (teM), which typically involves all sequence contexts and generally affects TEs, but can also be found within genes. GbM and teM have distinct epigenetic dynamics, and it is hard to know how methylation patterns are changing during the experiment if gbM and teM are mixed. This can also have downstream consequences (see point below).

We thank Reviewer 2 for this suggestion. We usually separate the three contexts because they are set by different enzymes and not because of the entire process or function. It would indeed be informative to group DMCs into gbM and teM but as there are many regions with overlaps between genes and transposons, this also adds some complexity. Given that there were very few DMCs, we wanted to keep it short and simple. Therefore, we wrote that 87.3% of the DMCs were close to or within genes and that 98.1% were close to and within genes or transposons. Together with the clear overrepresentation of the CG context, this indicates that most of the DMCs were related to gbM. We will update the paragraph and specifically refer to gbM to make this clear.

(2) For GO analysis, the authors use all annotated genes as a control. However, most of the methylation differences they observe are likely gbM, and gbM genes are not representative of all genes. The authors' results might therefore be explained purely as a consequence of analyzing gbM genes, and not an enrichment of methylation changes in any particular GO group.

This indeed a point worth considering. We will update the GO analysis and define the background as genes with cytosines that we tested for differences in methylation and which also exhibited overall at least 10% methylation (i.e., one cytosine per gene was sufficient). This will reduce the background gene set from 34'615 to 18'315 genes. A first analysis shows that results will change with respect to the post-translational protein modifications but will remain similar for epigenetic regulation and terms related to transport and growth processes. We will update the paragraph accordingly.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation