Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDaniel ZilbermanInstitue of Science and Technology, Klosterneuburg, Austria
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Reviewer #1 (Public review):
Summary:
The authors extended a previous study of selective response to herbivory in Arabidopsis, in order to look specifically for selection on induced epigenetic variation ("Lamarckian evolution"). They found no evidence. In addition, the re-examined result from a previously published study arguing that environmentally induced epigenetic variation was common, and found that these findings were almost certainly artifactual.
Strengths:
The paper is very clearly written, there is no hype, and the methods used are state-of-the-art.
Weaknesses:
The result is negative, so the best you can do is put an upper bound on any effects.
Significance:
Claims about epigenetic inheritance and Lamarckian evolution continue to be made based on very shaky evidence. Convincing negative results are therefore important. In addition, the study presents results that, to this reviewer, suggest that the 2024 paper by Lin et al. [26] should probably be retracted.
Reviewer #2 (Public review):
In this paper, the authors examine the extent to which epigenetic variation acquired during a selection treatment (as opposed to standing epigenetic variation) can contribute to adaptation in Arabidopsis. They find weak evidence for such adaptation and few differences in DNA methylation between experimental groups, which contrasts with another recent study (reference 26) that reported extensive heritable variation in response to the environment. The authors convincingly demonstrate that the conclusions of the previous study were caused by experimental error, so that standing genetic variation was mistaken for acquired (epigenetic) variation. Given the controversy surrounding the possible role of epigenetic variation in mediating phenotypic variation and adaptation, this is an important, clarifying contribution.
I have a few specific comments about the analysis of DNA methylation:
(1) The authors group their methylation analysis by sequence context (CG, CHG, CHH). I feel this is insufficient, because CG methylation can appear in two distinct forms: gene body methylation (gbM), which is CG-only methylation within genes, and transposable element (TE) and TE-like methylation (teM), which typically involves all sequence contexts and generally affects TEs, but can also be found within genes. GbM and teM have distinct epigenetic dynamics, and it is hard to know how methylation patterns are changing during the experiment if gbM and teM are mixed. This can also have downstream consequences (see point below).
(2) For GO analysis, the authors use all annotated genes as a control. However, most of the methylation differences they observe are likely gbM, and gbM genes are not representative of all genes. The authors' results might therefore be explained purely as a consequence of analyzing gbM genes, and not an enrichment of methylation changes in any particular GO group.