Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAdrien PeyracheMcGill University, Montreal, Canada
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public review):
Summary:
The authors use longitudinal in vivo 1-photon calcium recordings in mouse prefrontal cortex throughout the learning of an odor-guided spatial memory task, with the goal of examining the development of task-related prefrontal representations over the course of learning in different task stages and during sleep sessions. They report replication of their previous results, Muysers et al. 2025, that task and representations in prefrontal cortex arise de novo after learning, comprising of goal selective cells that fire selectively for left or right goals during the spatial working memory component of the task, and generalized task phase selective cells that fire equivalently in the same place irrespective of goal, together comprising task-informative cells. The number of task-informative cells increases over learning, and covariance structure changes resulting in increased sequential activation in the learned condition, but with limited functional relevance to task representation. Finally, the authors report that similar to hippocampal trajectory replay, prefrontal sequences are replayed at reward locations.
Strengths:
The major strength of the study is the use of longitudinal recordings, allowing identification of task-related activity in the prefrontal cortex that emerges de novo after learning, and identification of sub-second sequences at reward wells.
Comments on revisions:
The authors have added additional analyses and clarifications that increase the strength of evidence, especially quantification of functional classes of cells using longitudinal calcium recordings in prefrontal cortex during learning of an odor cue guided task, and quantification of prefrontal sequences.
There are a few remaining issues:
(1) The manuscript quantifies changes over learning in prefrontal goal-selective cells (equated to "splitter" place cells in hippocampus) and task-phase selective cells (similar to non-splitter place cells that are not goal modulated). A subset of these task cells remain stable throughout learning, and are equated to schema representations in the study. In the memory literature, schemas are generally described as relational networks of abstract and generalized information, that enable adapting to novel context and inference by enabling retrieval of related information from previous contexts. The task-phase selective cells that stay stable throughout learning clearly will have a role in organizing task representations, but to this reviewer, denoting them as forming a schema is an unwarranted interpretation. By this definition, hippocampal non-splitter place cells that emerge early in learning and are stable over days would also form a schema. Therefore, schema notation cannot just be based on stability, it requires further evidence of abstraction such as cross-condition generalization.
(2) The quantification of prefrontal replay sequences during reward is useful, but it is still unconvincing that the distinction between existence of sequences in the odor sampling phase and reward phase is not trivially expected based on prior literature. This is odor guided task, not a spatial exploration task with no cues, and it is very well-established (as noted in citations in the previous review) that during odor sampling, animals' will sniff in an exploratory stage, resulting in strong beta and respiratory rhythms in prefrontal cortex. Not having LFP recordings in this task does not preclude considering prior literature that clearly shows that odor sampling results in a unique internal state network state, when animals are retrieving the odor-associated goal, vastly different from a reward sampling phase. The authors argue that this is not trivial since they see some sequences during sampling, although they also argue the opposite in response to a question from Reviewer 2 about shuffling controls for sequences, that 'not' seeing these sequences in the sampling phase is an internal control. The bigger issue here is equating these sequences during sampling to replay/ preplay or reactivation sequences similar to the reward phase, since the prefrontal network dynamics are engaged in odor-driven retrieval of associated goals during sampling, as has been shown in previous studies.
Reviewer #2 (Public review):
Summary:
The first part of the manuscript quantifies the proportion of goal-arm specific and task-phase specific cells during the learning and learned conditions and similar to their previously published Muysers et al., 2025 paper find that the task-phase coding cells (Muysers et al. call them path equivalent cells) increase in the learned condition. However, compared to the Muysers et al. 2025 paper, this work quantifies the proportion of cells that change coding type across learning and learned conditions. The second part of the paper reports firing sequences using a sequence similarity clustering-based method that the group developed previously and applied to hippocampal data in the past.
Strengths:
Identifying sequences by a clustering method in which sequence patterns of individual events are compared is an interesting idea.
Weaknesses:
Further controls are needed to validate the results.
Comments on revisions:
Further changes are needed to improve the description of the methods and the discussion needs to be extended to contrast the results with previously published results of the group. Some control figures would also be needed to quantitatively demonstrate, across the entire dataset, that sequence detection did not identify random events as sequences, even if the detection method was designed to exclude such sequences. For example, showing that sequences are not detected in randomised data with the current method would better convince readers of the method's validity.
Although differences in the classification scheme relative to the Muysers et al. (2025) paper have been explained, the similarity (perhaps equivalence of results) is not sufficiently acknowledged - e.g., at the beginning of the discussion.
Although the control of spurious sequences may have been built into the method, this is not sufficiently explained in the method. It is also not clear what kind of randomization was performed. Importantly, I do not see a quantification that shows that the detected sequences are significantly better than the sequence quality measure on randomized events. Or that randomized data do not lead to sequence clusters. Also, it is still not clear how the number of clusters was established. I understand that the previously published paper may have covered these questions; these should be explained here as well. Also, the sequence similarity description is still confusing in the method; please correct this sentence "Only the l neurons active in both sequences of a pair were taken into account. "
Reviewer #3 (Public review):
In the study the authors performed longitudinal 1P calcium imaging of mouse mPFC across 8 weeks during learning of an olfactory-guided task, including habituation, training, and sleep periods. The authors' goal was to determine how the mPFC representation of the task changed and what aspects of activity emerged between the learning and the learned conditions of the task. The task had 3 arms. Odor was sampled at the end of the middle arm (named the "Sample" period). The animal then needed to run to one of the two other arms (R or L) based on the odor. The whole period until they reached the end of one of the choice arms was the "Outward" period. The time at the reward end was the "Reward" period. They noted several changes from the learning condition to the learned condition:
(1) They classified cells in a few ways. First each cell was classified as SI (spatially informative) if it had significantly more spatial information than shuffled activity, and ~50% of cells ended up being SI cells. Then among the SI cells they classified a cell as a TC (task cell) if it had statistically similar activity maps for R versus L arms, and a GC (goal arm cell) otherwise. Note that there are 4 kinds of these cells: outer arm TCs and GCs and middle arm TCs and GCs (with middle arm GCs essentially being like "splitter cells" since they are not similarly active in the middle arm for R versus L trials). There was an increase in TCs from the learning to the learned condition sessions. They also note the sources of these TCs (some came from GCs, others from non-SI cells).
(2) They analyze activity sequences across cells. They extracted 500 ms duration bursts (defined as periods of activity > 0.5 standard deviations over what I assume is the mean, which is a permissive threshold encompassing a significant fraction of the activity in non-sleep, non-habituation periods). They first noted that the resulting "Burst rates were significantly larger during behavioral epochs than during sleep and during periods of habituation to the arena" and "Moreover, burst rates during correct trials were significantly lower than during error trials". For the sequence analysis they only considered bursts consisting of at least 5 active cells. A cell's activity within the burst was set to the center of mass calcium activity. Then they took all the sequences from all learned and learning sessions together and hierarchically clustered them based on the Spearman's rank correlation between the order of activity in each pair of sequences (among the cells active in both). The iterative hierarchical clustering process produces groups (clusters) of sequences such that there are multiple repeats of sequences within a cluster. Different sequences are expressed across all the longitudinally recorded sessions. They noted "large differences of sequence activation between learning and learned condition, both in the spatial patterns (example animal in Fig. 4D) and the distribution of the sequences (Fig. 4D,E). Rastermap plots (Fig. 4D) also reveal little similarity of sequence expression between task and habituation or sleep condition." They also note the difference in the sequences between learning and learned condition was larger than the different between correct and error trials within each condition. They conclude that during task learning new representations are established, as measured by the burst sequence content. They do additional analyses of the sequence clusters by assessing the spatial informativeness (SI) of each sequence cluster. Over learning they find an increase in clusters that are spatially informative (clusters that tend to occur in specific locations). Finally, they analyzed the SI clusters in a similar manner as SI cells and classified them as task phase selective sequences (TSs) and goal arm selective sequences (GSs) and did some further analysis. However, they themselves conclude that the frequency of TSs and GSs is limited because most sequence clusters were non-SI. In the discussion they say "In addition to GSs and TSs, we found that most of the recurring sequences are not related to behavior (not SI)".
(3) As an alternative to analyzing individual cells and sequences of individual cells, they then look for trajectory replay using Bayesian population decoding of location during bursts. They analyze TS bursts, GS bursts, and non-SI bursts. They say "we found correlations of decoded position with time bin (within a 500 ms burst) strongly exceeding chance level only during outward and reward phase, for both GSs and TSs (Fig 5H)." Fig5H shows distributions indicating statistically significant bias in the forward direction (using correlations of decoded location versus time bin across 10 bins of 50 ms each within each 500ms burst). They find that the Outward trajectories appear to reflect the actual trajectory during running itself, so are likely not replay. But the sequences at the Reward are replay as they do not reflect the current location. Furthermore, replay at the Reward is in the forward direction (unlike the reverse replay at Reward seen in the hippocampus) and this replay is only seen in the learned and not the learning condition. At the same time, they find that replay is not seen during odor Sampling, from which they conclude there is no evidence of replay used for planning. Instead they say the replay at the Reward could possibly be for evaluation during the Reward phase, though this would only be for the learned condition. They conclude "Together with our finding of strong changes in sequence expression after learning (Fig 4E) these findings suggest that a representation of task develops during learning".
This study provides valuable new information about the evolution of mPFC activity during the learning of a odor-based 2AFC T-maze-like task. They show convincing evidence of changes in single cell tuning, population sequences, and replay events. They also find novel forward replay at the Reward, and find that this is present only after the animal learned the task. In the discussion the authors note "the present study, to our knowledge, identified for the first time fast recurring neural sequence activity from 1-p calcium data, based on correlation analysis". Overall, they find a substantial amount of change among the features they analyzed and according to their methods, though they note a small amount of activity was preserved through learning.
One comment is that the threshold for extracting burst events (0.5 standard deviations, presumably above the mean) seems lower than what one usually sees as a threshold for population burst detection, and the authors show (in Supplementary Fig 1) that this means bursts cover ~20-40% of the data. However, it is potentially a strength of this work that their results are found by using this more permissive threshold.