Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBjörn HerrmannBaycrest Hospital, Toronto, Canada
- Senior EditorAndrew KingUniversity of Oxford, Oxford, United Kingdom
Reviewer #1 (Public review):
Summary:
This manuscript describes the results of an experiment that demonstrates a disruption in statistical learning of room acoustics when transcranial magnetic stimulation (TMS) is applied to the dorsolateral prefrontal cortex in human listeners. The work uses a testing paradigm designed by the Zahorik group that has shown improvement in speech understanding as a function of listening exposure time in a room, presumably through a mechanism of statistical learning. The manuscript is comprehensive and clear, with detailed figures that show key results. Overall, this work provides an explanation for the mechanisms that support such statistical learning of room acoustics and, therefore, represents a major advancement for the field.
Strengths:
The primary strength of the work is its simple and clear result, that the dorsolateral prefrontal cortex is involved in human room acoustic learning.
Weaknesses:
A potential weakness of this work is that the manuscript is quite lengthy and complex.
Reviewer #2 (Public review):
Summary:
This study investigated how listeners adapt to and utilize statistical properties of different acoustic spaces to improve speech perception. The researchers used repetitive TMS to perturb neural activity in DLPFC, inhibiting statistical learning compared to sham conditions. The authors also identified the most effective room types for the effective use of reverberations in speech in noise perception, with regular human-built environments bringing greater benefits than modified rooms with lower or higher reverberation times.
Strengths:
The introduction and discussion sections of the paper are very interesting and highlight the importance of the current study, particularly with regard to the use of ecologically valid stimuli in investigating statistical learning. However, they could be condensed into parts. TMS parameters and task conditions were well-considered and clearly explained.
Weaknesses
(1) The Results section is difficult to follow and includes a lot of detail, which could be removed. As such, it presents as confusing and speculative at times.
(2) The hypotheses for the study are not clearly stated.
(3) Multiple statistical models are implemented without correcting the alpha value. This leaves the analyses vulnerable to Type I errors.
(4) It is confusing to understand how many discrete experiments are included in the study as a whole, and how many participants are involved in each experiment.
(5) The TMS study is significantly underpowered and not robust. Sample size calculations need further explanation (effect sizes appear to be based on behavioural studies?). I would caution an exploratory presentation of these data, and calculate a posteriori the full sample size based on effect sizes observed in the TMS data.
Reviewer #3 (Public review):
Summary:
This manuscript presents a well-designed and insightful behavioural study examining human adaptation to room acoustics, building on prior work by Brandewie & Zahorik. The psychophysical results are convincing and add incremental but meaningful knowledge to our understanding of reverberation learning. However, I find the transcranial magnetic stimulation (TMS) component to be over-interpreted. The TMS protocol, while interesting, lacks sufficient anatomical specificity and mechanistic explanation to support the strong claims made regarding a unique role of the dorsolateral prefrontal cortex (dlPFC) in this learning process. More cautious interpretation is warranted, especially given the modest statistical effects, the fact that the main TMS result of interest is a null result, the imprecise targeting of dlPFC (which is not validated), and the lack of knowledge about the timescale of TMS effects in relation to the behavioural task. I recommend revising the manuscript to shift emphasis toward the stronger behavioural findings and to present a more measured and transparent discussion of the TMS results and their limitations.
Strengths:
(1) Well-designed acoustical stimuli and psychophysical task.
(2) Comparisons across room combinations are well conducted.
(3) The virtual acoustic environment is impressive and applied well here.
(4) A timely study with interesting behavioural results.
Weaknesses:
(1) Lack of hypotheses, particularly for TMS.
(2) Lack of evidence for targeting TMS in [brain] space and time.
(3) The most interesting effect of TMS is a null result compared to a weak statistical effect for "meta adaptation"
Reviewer #4 (Public review):
Summary:
Several behavioral experiments and one TMS experiment were performed to examine adaptation to room reverberation for speech intelligibility in noise. This is an important topic that has been extensively studied by several groups over the years. And the study is unique in that it examines one candidate brain area, dlPFC, potentially involved in this learning, and finds that disrupting this area by TMS results in a reduction in the learning. The behavioral conditions are in many ways similar to previous studies. However, they find results that do not match previous results (e.g., performance in anechoic condition is worse than in reverberation), making it difficult to assess the validity of the methods used. One unique aspect of the behavioral experiments is that Ambisonics was used to simulate the spaces, while headphone simulation was mostly used previously. The main behavioral experiment was performed by interleaving 3 different rooms and measuring speech intelligibility as a function of the number of words preceding the target in a given room on a given trial. The findings are that performance improves on the time scale of seconds (as the number of words preceding the target increases), but also on a much larger time scale of tens to hundreds of seconds (corresponding to multiple trials), while for some listeners it is degraded for the first couple of trials. The study also finds that the performance is best in the room that matches the T60 most commonly observed in everyday environments. These are potentially interesting results. However, there are issues with the design of the study and analysis methods that make it difficult to verify the conclusions based on the data.
Strengths:
(1) Analysis of the adaptation to reverberation on multiple time scales, for multiple reverberant and anechoic environments, and also considering contextual effects of one environment interleaved with the other two environments.
(2) TMS experiment showing reduction of some of the learning effects by temporarily disabling the dlPFC.
Weaknesses:
While the study examines the adaptation for different carrier lengths, it keeps multiple characteristics (mainly talker voice and location) fixed in addition to reverberation. Therefore, it is possible that the subjects adapt to other aspects of the stimuli, not just to reverberation. A condition in which only reverberation would switch for the target would allow the authors to separate these confounding alternatives. Now, the authors try to address the concerns by indirect evidence/analyses. However, the evidence provided does not appear sufficient.
The authors use terms that are either not defined or that seem to be defined incorrectly. The main issue then is the results, which are based on analysis of what the authors call d', Hit Rate, and Final Hit rate. First of all, they randomly switch between these measures. Second, it's not clear how they define them, given that their responses are either 4-alternative or 8-alternative forced choice. d', Hit Rate, and False Alarm Rate are defined in Signal detection theory for the detection of the presence of a target. It can be easily extended to a 2-alternative forced choice. But how does one define a Hit, and, in particular, a False Alarm, in a 4/8-alternative? The authors do not state how they did it, and without that, the computation of d' based on HR and FAR is dubious. Also, what the authors call Hit Rate, is presumably the percent correct performance (PCC), but even that is not clear. Then they use FHR and act as if this was the asymptotic value of their HR, even though in many conditions their learning has not ended, and randomly define a variable of +-10 from FHR, which must produce different results depending on whether the asymptote was reached or not. Other examples of usage of strange usage of terms: they talk about "global likelihood learning" (L426) without a definition or a reference, or about "cumulative hit rate" (L1738), where it is not clear to me what "cumulative" means there.
There are not enough acoustic details about the stimuli. The authors find that reverberant performance is overall better than anechoic in 2 rooms. This goes contrary to previous results. And the authors do not provide enough acoustic details to establish that this is not an artefact of how the stimuli were normalized (e.g., what were the total signal and noise levels at the two ears in the anechoic and reverberant conditions?).
There are some concerns about the use of statistics. For example, the authors perform two-way ANOVA (L724-728) in which one factor is room, but that factor does not have the same 3 levels across the two levels of the other factor. Also, in some comparisons, they randomly select 11 out of 22 subjects even though appropriate test correct for such imbalances without adding additional randomness of whether the 11 selected subjects happened to be the good or the bad ones.
Details of the experiments are not sufficiently described in the methods (L194-205) to be able to follow what was done. It should be stated that 1 main experiment was performed using 3 rooms, and that 3 follow-ups were done on a new set of subjects, each with the room swapped.