Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorShuo WangWashington University in St. Louis, St. Louis, United States of America
- Senior EditorHuan LuoPeking University, Beijing, China
Reviewer #1 (Public review):
The manuscript titled "The distinct role of human PIT in attention control" by Huang et al. investigates the role of the human posterior inferotemporal cortex (hPIT) in spatial attention. Using fMRI experiments and resting-state connectivity analyses, the authors present compelling evidence that hPIT is not merely an object-processing area, but also functions as an attentional priority map, integrating both top-down and bottom-up attentional processes. This challenges the traditional view that attentional control is localized primarily in frontoparietal networks.
The manuscript is strong and of high potential interest to the cognitive neuroscience community. Below, I raise questions and suggestions to help with the reliability, methodology, and interpretation of the findings.
(1) The authors argue that hPIT satisfies the criteria for a priority map, but a clearer justification would strengthen this claim. For example, how does hPIT meet all four widely recognized criteria, such as spatial selectivity, attentional modulation, feature invariance, and input integration, when compared to classical regions such as LIP or FEF? A more systematic summary of how hPIT meets these benchmarks would be helpful. Additionally, to what extent are the observed attentional modulations in hPIT independent of general task difficulty or behavioral performance?
(2) The authors report that hPIT modulation is invariant to stimulus category, but there appear to be subtle category-related effects in the data. Were the face, scene, and scrambled images matched not only in terms of luminance and spatial frequency, but also in terms of factors such as semantic familiarity and emotional salience? This may influence attentional engagement and bias interpretation.
(3) The result that attentional load modulates hPIT is important and adds depth to the main conclusions. However, some clarifications would help with the interpretation. For example, were there observable individual differences in the strength of attentional modulation? How consistent were these effects across participants?
(4) The resting-state data reveal strong connections between hPIT and both dorsal and ventral attention networks. However, the analysis is correlational. Are there any complementary insights from task-based functional connectivity or latency analyses that support a directional flow of information involving hPIT? In addition, do the authors interpret hPIT primarily as a convergence hub receiving input from both DAN and VAN, or as a potential control node capable of influencing activity in these networks? Also, were there any notable differences between hemispheres in either the connectivity patterns or attentional modulation?
(5) A few additional questions arise regarding the anatomical characteristics of hPIT: How consistent were its location and size across participants? Were there any cases where hPIT could not be reliably defined? Given the proximity of hPIT to FFA and LOp, how was overlap avoided in ROI definition? Were the functional boundaries confirmed using independent contrasts?
Comments on revisions:
The authors have successfully addressed my previous questions and concerns. The public comments above reflect my views on the initial submission and, in my opinion, will remain helpful for general readers. Given this, I do not have additional public comments and will keep my previous public review unchanged.
Reviewer #2 (Public review):
Summary
This study investigates the role of the human posterior inferotemporal cortex (hPIT) in attentional control, proposing that hPIT serves as an attentional priority map that integrates both top-down (endogenous) and bottom-up (exogenous) attentional processes. The authors conducted three types of fMRI experiments and collected resting-state data from 15 participants. In Experiment 1, using three different spatial attention tasks, they identified the hPIT region and demonstrated that this area is modulated by attention across tasks. In Experiment 2, by manipulating the presence or absence of visual stimuli, they showed that hPIT exhibits strong attentional modulation in both conditions, suggesting its involvement in both bottom-up and top-down attention. Experiment 3 examined the sensitivity of hPIT to stimulus features and attentional load, revealing that hPIT is insensitive to stimulus category but responsive to task load - further supporting its role as an attentional priority map. Finally, resting-state functional connectivity analyses showed that hPIT is connected to both dorsal and ventral attention networks, suggesting its potential role as a bridge between the two systems. These findings extend prior work on monkey PITd and provide new insights into the integration of endogenous and exogenous attention.
Strength
(1) The study is innovative in its use of specially designed spatial attention tasks to localize and validate hPIT, and in exploring the region's role in integrating both endogenous and exogenous attention, as prior works focus primarily on its involvement in endogenous attention.
(2) The authors provided very comprehensive experiment designs with clear figures and detailed descriptions.
(3) A broad range of analyses was conducted to support the hypothesis that hPIT functions as an attentional priority map -- including experiments of attentional modulation under both top-down and bottom-up conditions, sensitivity to stimulus features and task load, and resting-state functional connectivity. These analyses showed consistent results.
(4) Multiple appropriate statistical analyses - including t-tests, ANOVAs, and post-hoc tests-were conducted, and the results are clearly reported.
Comments on revisions:
The authors have addressed our comments in their revised manuscript and in their response to the reviewers. We don't have any further suggestions or comments.