Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMegan KingYale School of Medicine, New Haven, United States of America
- Senior EditorFelix CampeloPompeu Fabra University, Barcelona, Spain
Reviewer #1 (Public review):
Summary:
Zare‑Eelanjegh et al. investigate how the endoplasmic reticulum, the nucleus, and the cell periphery are mechanically linked by indenting intact cells with specially shaped atomic‑force probes that double as drug injection devices. Fluorescence‑lifetime imaging of the membrane tension reporter Flipper‑TR reveals that these three compartments are mechanically linked and that the actin cytoskeleton, microtubules, and lamins modulate this coupling in complex ways.
Strengths:
(1) The study makes an important advance by applying FluidFM to probe organelle mechanics in living cells, a technically demanding but powerful approach.
(2) Experimental design is quantitative, the data are clearly presented, and the conclusions are broadly consistent with the measurements.
Weaknesses:
(1) Calcium‑dependent effects: Indentation can evoke cytoplasmic Ca²⁺ elevations that drive myosin contraction and reshape the internal membrane network (e.g., vesiculation: PMID : 9200614, 32179693) possibly confounding the Flipper-TR responses; without simultaneous/matching Ca²⁺ imaging, cell viability assays (e.g., Sytox), and intracellular Ca²⁺ sequestration or myosin inhibition experiments, a more complex mechanochemical coupling cannot be excluded, weakening conclusions.
(2) Baseline measurements: Flipper‑TR lifetime images acquired without indentation do not exclude potential light‑induced or time‑dependent changes, which weaken the conclusions.
(3) Indentation depth versus nuclear stiffness/tension: Because lamin‑A/C depletion softens nuclei, a given force may produce a deeper pit and thus greater membrane stretch. It is unclear how the cytoskeletal perturbations affect indentation depth, which weakens the conclusions.
Reviewer #2 (Public review):
Summary:
This useful study combines atomic force microscopy with genetic manipulations of the lamin meshwork and microinjection of cytoskeletal depolymerizing drugs to probe the mechanical responses of intracellular organelles to combinations of cytoskeletal perturbations. This study demonstrates both local and distal responses of intracellular organelles to mechanical forces and shows that these responses are affected by disruption of the actin, microtubule, and lamin cytoskeletal systems. Interpretation of these effects is limited by the absence of key data determining whether acute microinjection of cytoskeleton-depolymerizing drugs has complete or partial effects on the targeted cytoskeletal networks.
Strengths:
This study uses a sensitive micromanipulation system to apply and visualize the effects of force on intracellular organelles.
Weaknesses:
The choice to deliver cytoskeleton-depolymerizing drugs by local microinjection is unusual, and it is unclear to what extent actin and microtubule filaments are actually depolymerized immediately after microinjection and on the minutes-length timescale being evaluated in this study. This omission limits the interpretation of these data.
Reviewer #3 (Public review):
Summary:
Using an approach developed by the authors (FluidFM) combined with FLIM, they discover that a mechanical force applied over the cell nucleus triggers mechanical responses dependent on the Lamina composition.
Strengths:
The authors present a new approach to study mechano-transduction in living cells, with which they uncover lamin-dependent properties of the nucleus.
Weaknesses:
(1) The transfer of the mechanical response from the Lamina to the ER is not fully covered.
(2) In Figure 4D, WT dots are the same for each compartment. Why do the authors not make one graph for each compartment with WT, A-KO, B-KD, and A-KO/B-KD together?
(2) In Figure 1E, the authors showed well how the probe deforms the nucleus. It is not indicated in the material and methods section or in the figure legend, where, in Z, the acquisition of FLIM images was made or if it is a maximum projection. I assume it was made at a plane in the middle of the nucleus to see the nuclear envelope border and the ER at the same time. Did the authors look at the nuclear membrane facing upward, where most of the deformation should occur? Are there more lifetime changes? In Figure D, before injection of CytoD, we can clearly see a difference at the pyramidal indentation site with two different lifetime colors.
(3) A great result of this article regards the importance of Lamins, A and B, in triggering the response to a mechanical force applied to the nucleus. Could 3D imaging for LaminA and LaminB be performed at the different time points of indentation to see how the lamins meshworks are deformed and how they return to basal state? This could be correlated with the FLIM results described in the article.
(4) Lamins form a meshwork underneath the nuclear membrane. They are connected to the cytoskeletons mainly by the LINC complex. Results presented here show that the cytoskeletons are implicated in transferring the stimulus from the nuclear envelope to the ER. Could the author perform the same experiments using Nesprin-2 or/and Nesprin-1 or/and SUN1/2 knockdowns to determine if this transmission is occurring through the LINC complex or rather in a passive way by modifying the nuclear close surroundings?
(5) The authors used cytoskeleton drugs, CytoD and Nocodazole, with their FluidFM probe, but did not show if the drugs actually worked and to what extent by performing actin or microtubule stainings. In the original paper describing FluidFM, 15s were enough to obtain a full FITC-positive cell after injection. Here, the experiments are around 5 minutes long. I therefore interrogate the rationale behind the injection of the drugs compared to direct incubation, besides affecting only the cell currently under indentation.