Economic and Social Modulations of Innate Decision-Making in Mice Exposed to Visual Threats

  1. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
  2. Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
  3. Chinese Institute for Brain Research, Beijing, China
  4. Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Alicia Izquierdo
    University of California, Los Angeles, Los Angeles, United States of America
  • Senior Editor
    Joshua Gold
    University of Pennsylvania, Philadelphia, United States of America

Reviewer #1 (Public review):

Summary:

This study investigates how mice make defensive decisions when exposed to visual threats and how those decisions are influenced by reward value and social hierarchy. Using a naturalistic foraging setup and looming stimuli, the authors show that higher threat leads to faster escape, while lower threat allows mice to weigh reward value. Dominant mice behave more cautiously, showing higher vigilance. The behavioral findings are further supported by a computational model aimed at capturing how different factors shape decisions.

Strengths:

(1) The behavioral paradigm is well-designed and ethologically relevant, capturing instinctive responses in a controlled setting.

(2) The paper addresses an important question: how defensive behaviors are influenced by social and value-based factors.

(3) The classification of behavioral responses using machine learning is a solid methodological choice that improves reproducibility.

Weaknesses:

(1) Key parts of the methods are hard to follow, especially how trials are selected and whether learning across trials is fully controlled for. For example, it is unclear whether animals are in the nest during the looming stimulus presentations. The main text and methods should clarify whether multiple mice are in the nest simultaneously and whether only one mouse is in the arena during looming exposure. From the description, it seems that all mice may be freely exploring during some phases, but only one is allowed in the arena at a time during stimulus presentation. This point is important for understanding the social context and potential interactions, and should be clearly explained in both the main text and methods.

(2) It is often unclear whether the data shown (especially in the main summary figures) come from the first trial or are averages across several exposures. When is the cut-off for trials of each animal? How do we know how many trial presentations were considered, and how learning at different rates between individuals is taken into account when plotting all animals together? This is important because the looming stimulus is learned to be harmless very quickly, so the trial number strongly affects interpretation.

(3) The reward-related effects are difficult to interpret without a clearer separation of learning vs first responses.

(4) The model reproduces observed patterns but adds limited explanatory or predictive power. It does not integrate major findings like social hierarchy. Its impact would be greatly improved if the authors used it to predict outcomes under novel or intermediate conditions.

(5) Some conclusions (e.g., about vigilance increasing with reward) are counterintuitive and need stronger support or alternative explanations. Regarding the interpretation of social differences in area coverage, it's also possible that the observed behavioral differences reflect access to the nesting space. Dominant mice may control the nest, forcing subordinates to remain in the open arena even during or after looming stimuli. In this case, subordinates may be choosing between the threat of the dominant mouse and the external visual threat. The current data do not distinguish between these possibilities, and the authors do not provide evidence to support one interpretation over the other. Including this alternative explanation or providing data that addresses it would strengthen the conclusions.

(6) While potential neural circuits are mentioned in the discussion, an earlier introduction of candidate brain regions and their relevance to threat and value processing would help ground the study in existing systems neuroscience.

(7) Some figures are difficult to interpret without clearer trial/mouse labeling, and a few claims in the text are stronger than what the data fully support. Figure 3H is done for low contrast, but the interesting findings will be to do this experiment with high contrast. Figure 4H - I don't understand this part. If the amount of time in the center after the loom changes for subordinate mice, how does this lead to the conclusion that they spend most of their time in the reward zone?. Figure 3A - The example shown does not seem representative of the claim that high contrast stimuli are more likely to trigger escape. In particular, the 10% sucrose condition appears to show more arena visits under low contrast than high contrast, which seems to contradict that interpretation. Also, the plot currently uses trials on the Y-axis, but it would be more informative to show one line per animal, using only the first trial for each. This would help separate initial threat responses from learning effects and clarify individual variability.

(8) The analysis does not explore individual variability in behavior, which could be an important source of structure in the data. Without this, it is difficult to know whether social hierarchy alone explains behavioral differences or if other stable traits (e.g., anxiety level, prior experiences) also contribute.

(9) The study shows robust looming responses in group-housed animals, which contrasts with other studies that often require single housing to elicit reliable defensive responses. It would be valuable for the authors to discuss why their results differ in this regard and whether housing conditions might interact with social rank or habituation.

Reviewer #2 (Public review):

Zhe Li and colleagues investigate how mice exposed to visual threats and rewards balance their decisions in favour of consuming rewards or engaging in defensive actions. By varying threat intensity and reward value, they first confirm previous findings showing that defensive responses increase with threat intensity and that there is habituation to the threat stimulus. They then find that water-deprived mice have a reduced probability of escaping from low contrast visual looming stimuli when water or sucrose are offered in the environment, but that when the stimulus contrast is high, the presence of sucrose or water increases the probability of escape. By analysing behaviour metrics such as the latency to flee from the threat stimulus, they suggest that this increase in threat sensitivity is due to increased vigilance. Analysis of this behaviour as a function of social hierarchy shows that dominant mice have higher threat sensitivity, which is also interpreted as being due to increased vigilance. These results are captured by a drift diffusion model variant that incorporates threat intensity and reward value.

The main contribution of this work is to quantify how the presence of water or sucrose in water-deprived mice affects escape behaviour. The differential effects of reward between the low and high contrast conditions are intriguing, but I find the interpretation that vigilance plays a major role in this process is not supported by the data. The idea that reward value exerts some form of graded modulation of the escape response is also not supported by the data. In addition, there is very limited methodological information, which makes assessing the quality of some of the analyses difficult, and there is no quantification of the quality of the model fits.

(1) The main measure of vigilance in this work is reaction time. While reaction time can indeed be affected by vigilance, reaction times can vary as a function of many variables, and be different for the same level of vigilance. For example, a primate performing the random dot motion task exhibits differences in reaction times that can be explained entirely by the stimulus strength. Reaction time is therefore not a sound measure of vigilance, and if a goal of this work is to investigate this parameter, then it should be measured. There is some attempt at doing this for a subset of the data in Figure 3H, by looking at differences in the action of monitoring the visual field (presumably a rearing motion, though this is not described) between the first and second trials in the presence of sucrose. I find this an extremely contrived measure. What is the rationale for analysing only the difference between the first and second trials? Also, the results are only statistically significant because the first trial in the sucrose condition happens to have zero up action bouts, in contrast to all other conditions. I am afraid that the statistics are not solid here. When analysing the effects of dominance, a vigilance metric is the time spent in the reward zone. Why is this a measure of vigilance? More generally, measuring vigilance of threats in mice requires monitoring the position of the eyes, which previous work has shown is biased to the upper visual field, consistent with the threat ecology of rodents.

(2) In both low and high contrast conditions, there are differences in escape behaviour between no reward and water or sucrose presence, but no statistically significant differences between water and sucrose (eg, Figure 3B). I therefore find that statements about reward value are not supported by the data, which only show differences between the presence or absence of reward. Furthermore, there is a confound in these experiments, because according to the methods, mice in the no-reward condition were not water deprived. It is thus possible that the differences in behaviour arise from differences in the underlying state.

(3) There is very little methodological information on behavioural quantification. For example, what is hiding latency? Is this the same are reaction time? Time to reach the safe zone? What exactly is distance fled? I don't understand how this can vary between 20 and 100cm. Presumably, the 20cm flights don't reach the safe place, since the threat is roughly at the same location for each trial? How is the end of a flight determined? How is duration measured in reward zone measures, e.g., from when to when? How is fleeing onset determined?

(4) There is little methodological information on how the model was fit (for example, it is surprising that in the no reward condition, the r parameter is exactly 0. What this constrained in any way), and none of the fit parameters have uncertainty measures so it is not possible to assess whether there are actually any differences in parameters that are statistically significant.

Reviewer #3 (Public review):

Male mice were tested in a classic behavioral "flee the looming stimulus" paradigm. This is a purely behavioral study; no neural analyses were done. Mice were housed socially, but faced the looming stimulus individually. Drift-diffusion modeling found that reward-level interacted with threat level such that at low-threat levels, reward contrasted with threat as classically expected (high reward overwhelms low threat, low threat overwhelms low reward), but that reward aligned with threat at higher threat levels.

Note that they define threat level by the darkness of the looming stimulus. I am not sure that darker stimuli are more threatening to mice. But maybe. Figure 3 shows that mice react more quickly to high contrast looming stimuli, but can the authors distinguish between the ability to detect the visual signal from considering it a more dangerous threat? (The fact that vigilance makes a difference in the high contrast condition, not the low contrast condition, actually supports the author's hypotheses here.)

The drift-diffusion model (DDM) is fine. I note that the authors included a "leakage rate", which is not a standard DDM parameter (although I like including it). I would have liked to see more about the parameters. What were the distributions? What did the parameters correlate with behaviorally? I would have liked to see distributions of the parameters under the different conditions and different animals. Figure 2C shows the progression of learning. How do the fit parameters change over time as mice shift from choice to choice? How do the parameters change over mice? How do the parameters change over distance to the threat/distance to safety (as per Fanselow and Lester 1988)? They did a supplemental experiment where the threat arrived halfway along the corridor - we could get a lot more detail about that experiment - how did it change the modeling?

Overall, this is a reasonable study showing mostly unsurprising results. I think the authors could do more to connect the vigilance question to their results (which seems somewhat new to me).

Although the data appear generally fine and the modeling reasonable, the authors do not do the necessary work to set themselves within the extensive literature on decision-making in mice retreating from threats.

First of all, this is not a new paradigm; variants of this paradigm have been used since at least the 1980s. There is an *extensive* literature on this, including extensive theoretical work on the relation of fear and other motivational factors. I recommend starting with the classic Fanselow and Lester 1988 paper (which they cite, but only in passing), and the reviews by Dean Mobbs and Jeansok Kim, and by Denis Paré and Greg Quirk, which have explicit theoretical proposals that the authors can compare their results to. I would also recommend that the authors look into the "active avoidance" literature. Moreover, to talk about a mouse running from a looming stimulus without addressing the other "flee the predator" tasks is to miss a huge space for understanding their results. Again, I would start with the reviews above, but also strongly urge the authors to look at the Robogator task (work by June-Seek Choi and Jeansok Kim, work by Denis Paré, and others).

Similarly, in their anatomical review, they do not mention the amygdala. Given the extensive literature on the role of the amygdala in retreating from danger, both in terms of active avoidance and in terms of encoding the danger itself, it would surprise me greatly if this behavior does not involve amygdala processing. (If there is evidence that the amygdala does not play a role here, but that the superior colliculus does, then that would be a *very* important result that needs to be folded into our understanding of decision-making systems and neural computational processing.)

Second, there is an extensive economic literature on non-human animals in general and on rodents in particular. Again, the authors seem unaware of this work, which would provide them with important data and theories to broaden the impact of their results (by placing them within the literature). First, there are explicit economic literatures in terms of positively-valenced conflicts (e.g., neuroeconomics within the primate literature, sequential foraging and delay-discounting tasks within the rodent literature), but also there is a long history within the rodent conditioning world, such as the classic work by Len Green and Peter Shizgal. I would strongly urge the authors to explore the motivational conflict literature by people like Gavin McNally, Greg Quirk, and Mark Andermann. Again, putting their results into this literature will increase the impact of their experiment and modeling.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation