In vivo CRISPR screening identifies regulators of hyperplastic and hypertrophic adipose remodelling in zebrafish

  1. Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Michel Bagnat
    Duke University, Durham, United States of America
  • Senior Editor
    Richard White
    University of Oxford, Oxford, United Kingdom

Joint Public Review:

In this manuscript, Wafer and Tandon et al. present a thoughtful and well-designed genetic screen for regulators of adipose remodeling using zebrafish as a model system. The authors cross-referenced several human adipocyte-related transcriptomic and genetic association datasets to identify candidate genes, which they then tested in zebrafish. Importantly, the authors devised an unbiased microscopy-based screening platform to document quantitative adipose phenotypes with whole animal imaging, while also employing rigorous statistical methods. From their screen, the authors identified 6 genes that resulted in robust adipose phenotypes out of a total of 25 that were tested. Overall, this work will be a useful resource for the field because of both the genes identified and the quantitative, rigorous screening pipeline. However, there are limitations that preclude a definitive distinction between developmental and remodeling effects that should be acknowledged and discussed, or addressed with new experiments.

Strengths:

(1) This work combines multiple omic datasets to identify candidate genes that informed a CRISPR-based screen to identify genes underlying adipose tissue development and adaptation. This approach offers a new avenue to improve our understanding and testing of new genetic mechanisms underlying the development of obesity.

(2) Using a clever screening approach, this study identifies new genes that are associated with adipose tissue lipid droplet size change. Importantly, the study provides further validation using a stable CRISPR line to show the phenotype in basal and high-fat diet conditions.

(3) The experiments are well-designed and rigorous. Sample sizes are large. Statistical analyses are highly rigorous, contributing to a high-quality study.

Weaknesses:

(1) The image quantification established in Figures 3 and 4 and used in CRISPR screening showed the relationship among zebrafish development, adipose tissue size, and lipid droplet size. Although adipose tissue development patterning is linked with adipose tissue adaptation, as shown by the evidence provided in this paper, it will be more powerful if the imaging method and pipeline were established to directly access the adipose tissue plasticity rather than just the developmental patterning. Furthermore, the authors should perform additional analysis of their existing data to more accurately determine lipid droplet size along the AP axis in response to HFD.

(2) In the absence of tissue-specific manipulations, definitively establishing the mechanisms underlying the genetic regulation of adipose tissue physiology presents limitations.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation