Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorRui Ponte CostaUniversity of Oxford, Oxford, United Kingdom
- Senior EditorTamar MakinUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
Shahbazi et al used a recurrent neural network model trained to control a musculoskeletal model of the arm to investigate how neural populations accommodate activity patterns underpinning savings. The paper draws upon the recent finding of a "uniform shift" in preparatory activity in monkey motor cortex associated with savings, and leverages full access to a computational model to establish causality.
Strengths:
The paper is well written, and the figures are clearly presented. The key finding that the uniform shift first reported based on neural recordings by Sun et al. emerges in artificial neural networks performing a similar task is interesting and well-backed by their analyses. Manipulating this uniform shift to show that it drives behavioural savings is an important causal confirmation of the proposal by Sun et al.
Weaknesses / Comments:
As mentioned earlier, the core results are well backed by the analyses. Most of my comments relate to adding more controls and additional questions that could be explored with the model to strengthen the paper.
(1) Savings are quantified as more rapid relearning of the FF upon re-exposure (e.g., Figure 3). This finding is based on backpropagation through time, but would this hold when using a different optimiser, e.g., FORCE?
(2) The authors should include a "null model" showing that training on a different reaching task following NF, as opposed to FF2, won't show something akin to a uniform shift during preparation due to the adoption of TDR and having similar targets.
(3) The analyses of network activity during movement preparation (Figure 4) nicely replicate the key finding in Sun et al, but I think the authors could leverage the full access to their network and go further, e.g., by examining changes (or the lack of) during execution in FF2 with respect to FF (and perhaps in a future NF2 with respect to NF), including whether execution activity lives also lives in parallel hyperplanes, etc.
(4) Related to the above, while the results are interesting and the paper is well done, I kept wishing that the authors had done "more" with their model. This could be one or two final sections on "predictions" that would nicely complement their "validation" of the uniform shift, and that, in my opinion, would greatly increase the impact of the paper. In particular:
a) What would be the effect of learning more "tasks"? For example, is there a limit on how many fields can be learned? (You show something related by manipulating network size, but this is slightly different.)
b) Figure 5 is a nice causal demonstration that the uniform shift is related to savings. However, and related to comment #3, it'd be interesting to see more details about how the behaviour and the network activity changes as preparatory activity shifts along this axis, in particular regarding how moving the preparatory states affect the organisation and dynamics of upcoming execution activity -these are the kind of intuitions that modelling studies like this one can provide.
c) The authors focus on a task design that spans baseline, FF, NF, FF2 to replicate the original study by Sun et al. However, it would be interesting if they generated predictions for neural changes to other types of tasks that have been studied behaviourally. These could include, for example: (i) modelling a visuomotor rotation or a mirror reversal task; (ii) having to adapt to a FF in the opposite direction; (iii) investigating the role of adding an explicit context and having the networks learn multiple FF; and (iv) trying to learn FF fields in opposite directions, perhaps restricted to specific targets. As the authors know, all these questions and more have been studied with similar behavioural paradigms, and it would be nice to see what neural predictions are generated by this model.
(5) On the Discussion: When extrapolating from neural network results to animals, the fact that your networks can learn implicitly doesn't mean that animals do learn implicitly. Indeed, I think the consensus view is that different perturbations may lead to the expression of different types of savings (e.g., FF vs VR, which seems to be more explicit). Besides, these different mechanisms may be primarily implemented by brain regions less directly tied to motor control (e.g., cerebellum, parietal cortex?), which are not directly implemented in the authors' model.
These aspects (limitations) should be discussed in the paper.
Reviewer #2 (Public review):
Summary:
Shahbazi et al. trained recurrent neural networks (RNNs) to simulate human upper limb movement during adaptation to a force field perturbation. They demonstrated that throughout adaptation, the pattern of motor commands to the muscles of the simulated arm changed, allowing the perturbed movements to regain their typical, perturbation-free straight-line paths. After this initial learning block (FF1), the network encountered null-fields to wash out the adaptation, before re-experiencing the force in a second learning block (FF2). Upon re-exposure, the network learned faster than during initial learning, consistent with the savings observed in behavioral studies of adaptation. They also found that as the number of hidden units in the RNN increased, so did the probability of exhibiting savings. The authors concluded that these results propose a neural basis for savings that is independent of context and strategic processes.
Strengths:
The paper addresses an important and controversial topic in motor adaptation: the mechanism underlying motor memory. The RNN simulation reproduces behavioral hallmarks of adaptation, and it provides a useful illustration of the pattern of muscle activity underlying human-like movements under both normal and perturbing conditions. While the savings effect produced by the network, though significant, appears somewhat small, the simulation demonstrating an increase in savings with a greater number of hidden units is particularly intriguing.
Weaknesses:
(1) To be transparent, savings in motor adaptation have been a primary focus of my own research. Some core findings presented in this paper are at odds with the ideas I and others have previously put forward. While I don't want to impose my agenda on the authors of this paper, I do think the authors should address these issues.
a) The authors acknowledge the ongoing debate in the literature regarding the mechanisms underlying savings, particularly whether it stems from explicit or implicit learning processes. However, it remains unclear how the current work addresses this debate. There is already a considerable body of research, particularly in visuomotor adaptation, demonstrating that savings is predominantly driven by explicit strategies. For example, when people are asked to report their strategy, they recall a strategy that was useful during the first learning block (Morehead et al. 2015). Furthermore, savings are abolished under experimental manipulations designed to eliminate strategic contributions (e.g., Haith et al., 2015; Huberdeau et al., 2019; Avraham et al., 2021). The authors briefly state that their findings support the hypothesis that a neural basis of memory retention underlying savings can be independent of cognitive or strategic learning components, and that savings can be characterized as implicit. While these statements may be true, it is not clear how this work substantiates these claims.
b) Our research has also demonstrated that if implicit adaptation is completely washed out after the initial learning block, it not only fails to exhibit savings but is actually attenuated relative to the first learning block (Avraham et al., 2021). This phenomenon of attenuation upon relearning can also be seen in other studies of visuomotor adaptation (e.g., Leow et al., 2020; Yin and Wei, 2020; Hamel et al., 2021; Hamel et al., 2022; Wang and Ivry, 2023; Hadjiosif et al., 2023). More recently, we have shown that this attenuation is due to anterograde interference arising from the experience with the washout block experience (Avraham and Ivry, 2025). We illustrated that the implicit system is highly susceptible to interference; it doesn't require exposure to salient opposite errors and can occur even following prolonged exposure to veridical feedback. The central thesis of this paper, namely that implicit savings can emerge through RNNs, is at odds with these empirical results. The authors should address this discrepancy.
(2) This brings me to the question about neural correlates: The results are linked to activity in the primary motor cortex. How does that align with the well-established role of the cerebellum in implicit motor adaptation? And with the studies showing that savings are due to explicit strategies, which are generally associated with prefrontal regions?
(3) The analysis on the complexity of the neural network (i.e., the number of hidden units) and its relationship to savings is very interesting. It makes sense to me that more complex networks would show more savings. I'm not sure I follow the author's explanation, but my understanding is that increased network complexity makes it more difficult to override the formed memory through interference (e.g., from the experience with NF2). Also, the results indicate that a network with 32 units led to a less-than-chance level of networks exhibiting savings (Figure 3b). What behavioral output does this configuration produce? Could this behavior manifest as attenuation upon relearning? Furthermore, if one were to examine an even smaller, simpler network (perhaps one more closely reflecting cerebellar circuits), would such a model predict attenuation rather than savings?
(4) The authors emphasize that their network did not receive any explicit contextual signals related to the presence or absence of the force field (FF), thus operating in a 'context-free' manner. From my understanding, some existing models of context's role in motor memories (e.g., Oh and Schweighofer, 2019; Heald et al., 2021) propose that memory-related changes can be observed even without explicit contextual information, as contextual changes can be inferred from sudden or significant environmental shifts (e.g., the introduction or removal of perturbations). Given this, could the observed savings in the current simulation be explained by some form of contextual retrieval, inferred by the network from the re-presentation of the perturbation in FF2?
(5) If there is residual hidden unit activity related to the FF at the end of the NF2 phase, how does the simulated movement revert back to baseline? Are there any differences in the movement trajectory, beyond just lateral deviation, between NF1 and NF2? The authors state that "changes in the preparatory hidden unit activity did not result in substantive changes in the motor commands (Figure 5b), which emphasizes that the uniform shift resides in the null space of motor output." However, Figure 5b appears to show visible changes in hidden unit activity. Don't these changes reflect a pattern of muscle activity that is the basis for behavior? These changes are indeed small, but it seems that so is the effect size for savings (Figure 3a). Could this suggest that there is not, in fact, a complete washout of initial learning during NF2 within the network?