Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorXiaobing ShiVan Andel Institute, Grand Rapids, United States of America
- Senior EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
Reviewer #1 (Public review):
Summary:
In this manuscript, Mack and colleagues investigate the role of posttranslational modifications, including lysine acetylation and ubiquitination, in methyltransferase activity of SETD2 and show that this enzyme functions as a tumor suppressor in a KRASG12C-driven lung adenocarcinoma. In contrast to H3K36me2-specific oncogenic methyltransferases, the deletion of SETD2, which is capable of H3K36 trimethylation, increases lethality in a KRASG12C-driven lung adenocarcinoma mouse tumor model. In vitro, the authors demonstrate that polyacetylation of histone H3, particularly of H3K27, H3K14, and H3K23, promotes the catalytic activity of SETD2, whereas ubiquitination of H2A and H2B has no effect.
Strengths:
Overall, this is a well-designed study that addresses an important biological question regarding the functioning of the essential chromatin component. The manuscript contains excellent quality data, and the conclusions are convincing and justified. This work will be of interest to many biochemists working in the field of chromatin biology and epigenetics.
Weaknesses:
A minor comment: labels should be added in the Figures and should be uniform across all Figures (some are distorted).
Reviewer #2 (Public review):
Summary:
Human histone H3K36 methyltransferase Setd2 has been previously shown to be a tumor suppressor in lung and pancreatic cancer. In this manuscript by Mack et al., the authors first use a mouse KRASG12D-driven lung cancer model to confirm in vivo that Setd2 depletion exacerbates tumorigenesis. They then investigate the enzymatic regulation of the Setd2 SET domain in vitro, demonstrating that H2A, H3, or H4 acetylation stimulates Setd2-SET activity, with specific enhancement by mono-acetylation at H3K14ac or H3K27ac. In contrast, histone ubiquitination has no effect. The authors propose that H3K27ac may regulate Setd2-SET activity by facilitating its binding to nucleosomes. This work provides insight into how cross-talk between histone modifications regulates Setd2 function. However, the manuscript lacks a clear discussion on how Setd2's in vivo tumor suppressor role and the in vitro mechanistic regulation findings are connected. Additionally, some experiments require more controls and better data quality for proper interpretation.
Specific comments:
(1) As for Figure 2F, Setd2-SET activity on WT rNuc (H3) appears to be significantly lower compared to what is extensively reported in the literature. This is particularly puzzling given that Figure 2B suggests that using 3H-SAM, H3-nuc are much better substrates than K36me1, whereas in Figure 3F, rH3 is weaker than K36me1. It is recommended for the authors to perform additional experimental repeats and include a quantitative analysis to ensure the consistency and reliability of these findings.
(2) The additional bands observed in Figure 4B, which appear to be H4, should be accompanied by quantification of the intensity of the H3 bands to better assess K36me3 activity. Additionally, the quantification presented in Figure 4C for SAH does not seem accurate as it potentially includes non-specific methylation activity, likely from H4. This needs to be addressed for clarity and accuracy.
(3) In Figure 4E, the differences between bound and unbound substrates are not sufficiently pronounced. Given the modest differences observed, authors might want to consider repeating the assay with sufficient replicates to ensure the results are statistically robust.
(4) Regarding labeling, there are multiple issues that need correction: In the depiction of Epicypher's dNuc, it is crucial to clearly mark H2B as the upper band, rather than ambiguously labeling H2A/H2B together when two distinct bands are evident. In Figure 3B and D, the histones appear to be mislabeled, and the band corresponding to H4 has been cut off. It would be beneficial to refer to Figure 3E for correct labeling to maintain consistency and accuracy across figures.
(5) There are issues with the image quality in some blots; for instance, Figure 2EF and Figure 2D exhibit excessive contrast and pixelation, respectively. These issues could potentially obscure or misrepresent the data, and thus, adjustments in image processing are recommended to provide clearer, more accurate representations.
(6) The authors are recommended to provide detailed descriptions of the materials used, including catalog numbers and specific products, to allow for reproducibility and verification of experimental conditions.
(7) The identification of Setd2 as a tumor suppressor in KrasG12C-driven LUAD is a significant finding. However, the discussion on how this discovery could inspire future therapeutic approaches needs to be more balanced. The current discussion (Page 10) around the potential use of inhibitors is somewhat confusing and could benefit from a clearer explanation of how Setd2's role could be targeted therapeutically. It would be beneficial for the authors to explore both current and potential future strategies in a more structured manner, perhaps by delineating between direct inhibitors, pathway modulators, and other therapeutic modalities.