Separable global and local beta burst dynamics in motor cortex of primates

  1. Department of Neurology, University of California, San Francisco, San Francisco, United States
  2. California National Primate Research Center, University of California, Davis, Davis, United States
  3. Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
  4. Medical Scientist Training Program, University of California, San Francisco, San Francisco, United States
  5. Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Juan Alvaro Gallego
    Imperial College London, London, United Kingdom
  • Senior Editor
    Tamar Makin
    University of Cambridge, Cambridge, United Kingdom

Reviewer #1 (Public review):

Summary:

This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

Strengths:

The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spike-LFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

Weaknesses:

There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts. Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control. Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed. Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

Impact:

This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

Langford, Z.D., Wilson, C.R.E., 2025. Simulations reveal that beta burst detection may inappropriately characterize the beta band. https://doi.org/10.1101/2023.12.15.571838.

Rayson, H., Szul, M.J., El-Khoueiry, P., Debnath, R., Gautier-Martins, M., Ferrari, P.F., Fox, N., Bonaiuto, J.J., 2023. Bursting with potential: How sensorimotor beta bursts develop from infancy to adulthood. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0886-23.2023.

Szul, M.J., Papadopoulos, S., Alavizadeh, S., Daligaut, S., Schwartz, D., Mattout, J., Bonaiuto, J.J., 2023. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog. Neurobiol. 228, 102490.

Reviewer #2 (Public review):

Summary:

The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

Strengths:

Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

Weaknesses:

A major limitation of this paper is that it is a set of case studies rather than a well-designed, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery? While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

Reviewer #3 (Public review):

Summary:

Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

Strengths:

Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

Weaknesses:

The study's weaknesses are mostly minor and, for the most part, correctable.

One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

Other concerns:

In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

Author response:

Reviewer #1 (Public review):

Summary:

This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

We thank the reviewer for their assessment that the manuscript proves compelling evidence for distinct roles of local and global beta bursts on motor control and recovery.

Strengths:

The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spikeLFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

We thank the reviewer for recognizing the strengths of this manuscript.

Weaknesses:

There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts.

We thank the reviewer for bringing up these methodological details. We plan to conduct a follow-up analysis using alternative burst detection methods to verify that the paper’s main results hold when using different burst detection methodologies. We anticipate this will improve confidence in our results.

Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control.

We thank the reviewer for this comment. First, because the different animals had subcortical recording sites in different locations, we hesitate to use subcortical activity in the classification of bursts since we were not sure we would be identifying the same burst-phenomenon (e.g. thalamo-cortical bursts vs. capsule-cortical bursts may differ). Second, we believe that having a cortical-only criteria allows the designation of local vs. global bursts to be more widely applied in preparations that only have access to cortical data (e.g. surface ECoG recordings, EEG, Utah array recordings). Thus, in this study we chose to analyze the subcortical data post-hoc (after burst detection and classification) to support our “global” vs. “local” designation of burst types

Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed.

We thank the reviewer for this comment. In our study’s stroke animals, we chose to study PMv due to its role in compensating for damage to M1, thus we hesitate to make any comparisons between PMv (which was recorded in stroke animals) and M1 (recorded in healthy unimpaired animals). Furthermore, animals are doing different tasks (e.g. reaching vs. reaching and grasping) which may also influence the spatial distribution. We agree that future work should certainly investigate the spatial distribution of global vs. local beta bursts across areas of sensorimotor cortex and subcortex, and that this comparison would be best done in healthy animals with both reaching and grasping behaviors.

Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

Thank you for these references! We will review them and incorporate them into our discussion of our results.

Impact:

This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

We thank the reviewers for their assessment that our work will likely have a substantial impact on the field of motor systems neuroscience.

Reviewer #2 (Public review):

Summary:

The paper by Khanna et al. describes global vs local beta synchrony between a cortical premotor area (PMv) and subcortical structures during motor tasks in the non-human primate, specifically investigating the progression following M1 injury. They found that increases in global beta synchrony between PMv and subcortical structures during the sub-acute phase of injury, and that global synchrony was associated with relatively slower motor movements. As recovery progressed, they report a shift from global synchrony to local synchrony and a subsequent reduction in the movement time. The authors suggest that global changes in subcortical and cortical beta synchrony may generally underpin a variety of movement disorders, including Parkinson's disease, and that shifting from global to local (or reducing global synchrony) might improve functional outcomes.

Strengths:

Ischemic insults and other acquired brain injuries have a significant public health impact. While there is a large body of clinical and basic science studies describing the behavioral, neurophysiological, and mechanistic outcomes of such injury, there is a significant lack studies looking at longitudinal, behaviorally-related neurophysiological measures following cortical injury, so any information has outsized contribution to understanding how brain injury disrupts underlying neural activity and how this may contribute to injury presentation and recovery.

A significant percentage of pre-clinical stroke studies tend to focus on peri-infarct or other cortical structures and their role in recovery. The addition of subcortical recordings allows for the investigation of the role of thalamo-basal gangliar-cortical loops that may be contributing to the degree of impairment or to the recovery process is important for the field. Here, there are longitudinal (up to 3 months post-injury) recordings in the ventral premotor area (PMv) and either the internal capsule or sensorimotor thalamus that can be synchronized with phases of behavioral recovery.

The methods are well described and can act as a framework for assessing synchrony across other data sets with similar recording locations. Limitations in methodology, recordings, and behavior were noted.

We thank the reviewer for their comments on the strengths of this paper.

Weaknesses:

A major limitation of this paper is that it is a set of case studies rather than a welldesigned, well-controlled study of beta synchrony following motor cortex injury. While non-human primate neurophysiological studies are almost always limited by extremely low animal numbers, they are made up for by the fact that they can acquire significant numbers of units or channels, and in the case of normal behavior, can obtain many behavioral trials over months of individual sessions. Here, there were two NHPs used, but they had different subcortical implant locations (thalamus vs internal capsule). They had different injury outcomes, with one showing a typical recovery curve following injury while one had complications and worsening behavior before ultimately recovering. Further, there were significant differences in the ability to record at different times, with one NHP having poor recordings early in the recovery process while one had poor recordings late in the process. Due to the injury, the authors report sessions in which they were not able to record many trials (~10). Assuming that recovery after a cortical injury is an evolving process, breaking analysis into "Early" and "Late" phases reduces the interpretation of where these shifts occur relative to recovery on the task, especially given different thresholds for recovery were used between animals. Because of this, despite a careful analysis of the data and an extensive discussion, the conclusions derived are not particularly compelling. To overcome this, the authors present data from neurotypical NHPs, but with electrodes in M1 rather than PMv, doing a completely different task with no grasping component, again making accurate conclusions about the results difficult. Even with low numbers, the study would have been much stronger if there were within-animal longitudinal data prior to and after the injury on the same task, so the impact of M1 injury could be better assessed.

We thank the reviewer for these comments. Below we address some of these in more detail:

Different subcortical implant locations: We would like to clarify that the subcortical recordings were only used to confirm that global beta bursts (as characterized by cortical recordings alone) did indeed occur on subcortical sites coincidentally with cortical site more frequently than local beta bursts. Neither the beta burst categories nor the beta bursts themselves were influenced by the subcortical recordings.

Different injury outcomes: There is difficulty in creating strokes that result in identical deficits across animal as we and others have noted in previous work[1.3]. As a field, we are still understanding what factors give rise to variability in recovery curves. For example, one recent study noted that biological sex is a factor in predicting differences in recovery rates[4], and another noted that baseline white matter hyperintensities is also predictive of post-stroke recovery [5]. Overall, our methodology that creates structurally-consistent lesions can still result in very different functional outcomes depending on a variety of factors. Given this state of the field, we have done our best to match the recovery curves between our two animals, especially the initial recovery curves before Monkey H’s secondary decline.

Differences in ability to record at different times: We note this as a strength. One concern with these studies that induce stroke at the same time as implanting electrode arrays is that it is well appreciated that single-unit neuron yield right after array implantation is low and then improves in the following weeks [6]. There is always that concern that having more units later in recovery may drive results, but in this case, since one animal showed the opposite trend we are more confident that results are not driven by increases in unit-yield. We also note that we broadly see similar unit quality metrics in the early and late stages in both animals (Fig. S7).

Breaking continuous recovery curve into early and late: We note that this division was only made for one main analysis in the paper (Fig. 5CD): assessment of mean firing and variance of single-unit firing rates. Without this split our analyses would be underpowered and inconclusive, thus we would not be able to provide any comment on how firing rates change, even coarsely, with recovery.

Presentation of data from M1 of healthy animals doing a different task: We agree that the strongest data would be longitudinally recorded from the same animals/brain areas pre-stroke and then post-stroke. However, we also view our inclusion of separate healthy animals doing a different task as evidence that our global vs. local segregation of beta bursts generalizes beyond the reach-to-grasp task to reaching-only tasks.

Overall, we appreciate the reviewer pointing out these notes about our data. In some cases we do not think these notes are concerning, in others, we acknowledge that have done the best we can given the state of the neurophysiology stroke recovery field.

It is unclear to what extent the subpial aspiration used is a stroke model. While it is much more difficult to perform a pure ischemic motor injury using electrocoagulatory methods in animal models that do not have a lissencephalic cortex, the suction ablation method that the authors use leads to different outcomes than an ischemic injury alone. For instance, in rat models, ischemic vs suction ablation leads to very different electrophysiological profiles and differences in underlying anatomical reorganization (see Carmichael and Chesselet, 2002), even if the behavioral outcomes were similar. There is a concern that the effects shown may be an artifact of the lesion model rather than informing underlying mechanisms of recovery.

We thank the reviewer for bringing this up.

Clarification of our stroke model methodology: We wish to highlight that when we create stroke, we first do surface vessel occlusion as the first step. This is designed to match true ischemic injury. After a waiting period, the injured tissue is then aspiration to reduce the effects of edema and secondary mass effect in the model.

Carmichael and Chesselet 2002: The rodent work cited did show differential effects of a suction ablation method (without any surface vessel occlusion first) versus an ischemic method. The effects observed in this work were in the first 5 days following stroke. In our case, we started recording on day 7 and examined recovery over extended periods (weeks to months).

Effects of acute insult on rehabilitation: From a rehabilitation perspective, it remains unclear how the acute insult affects outcomes weeks and months later. One line of evidence to suggest that the manner that the acute insult occurs may not matter for rehabilitation is the observation that one therapeutic approach (vagus nerve stimulation) has been found to successfully improve rehabilitation outcomes in a range of injury models (intracranial hemorrhage, stroke, spinal cord injury). We agree that additional work is required in this area.

Human stroke data shows similar results reported: Lastly, we note that neurophysiology performed in humans with clinical strokes supports the results we seek here (e.g.[7], see discussion section for full elaboration) suggesting that our stroke model methodology is similar enough to clinical stroke to result in similar results.

The injury model leads to seemingly mild impairments in grasp (but not reach), with rapid and complete recovery occurring within 2-3 weeks from the time of injury. Because of the rapid recovery, relating the physiological processes of recovery to beta synchronization becomes challenging to interpret - Are the global bursts the result of the loss of M1 input to subcortical structures? Are they due to the lack of M1 targets, so there is a more distributed response? Is this due to other post-injury sub-acute mechanisms? How specific is this response - is it limited to peri-infarct areas (and to what extent is the PMv electrode truly in peri-infarct cortex), or would this synchrony be seen anywhere in the sensorimotor networks? Are the local bursts present because global synchrony wanes over time as a function of post-injury homeostatic mechanisms, or is local beta synchrony increasing as new motor plans are refined and reinforced during task re-acquisition? How coupled are they related to recovery - if it is motor plan refinement, the shift from global to local seemingly should lag the recovery?

We think these are all wonderful questions that could be addressed in follow-up studies!

While the study has significant limitations in design that reduce the impact of the results, it should act as a useful baseline/pilot data set in which to build a more complete picture of the role of subcortical-cortical beta synchrony following cortical injury.

We agree that this is a study that should be treated as a starting point for further investigation.

Reviewer #3 (Public review):

Summary:

Khanna et al. use a well-conceived and well-executed set of experiments and analyses primarily to document the interaction between neural oscillations in the beta range (here, 13-30 Hz) and recovery of function in an animal model of stroke. Specifically, they show that cortical "beta bursts", or short-term increases in beta power, correlate strikingly with the timeline of behavioral recovery as quantified with a reach-to-grasp task. A key distinction is made between global beta bursts (here, those that synchronize between cortical and subcortical areas) and local bursts (which appear on only a few electrodes). This distinction of global vs. local is shown to be relevant to task performance and movement speed, among other quantities of interest.

A secondary results section explores the relationship between beta bursts and neuronal firing during the grasp portion of the behavioral task. These results are valuable to include, though mostly unsurprising, with global beta in particular associated with lower mean and variance in spike rates.

Last, a partial recapitulation of the primary results is offered with a neurologically intact (uninjured) animal. No major contradictions are found with the primary results.

Highlights of the Discussion section include a thoughtful review of atypical movements executed by individuals with Parkinson's disease or stroke survivors, placing the current results in an appropriate clinical context. Potential physiological mechanisms that could account for the observed results are also discussed effectively.

Strengths:

Overall, this is a very interesting paper. The ultimate impact will be enhanced by the authors' choice to analyze beta bursts, which remain a relatively under-explored aspect of neural coding.

The reach-and-grasp task was also a well-considered choice; the combination of a relatively simple movement (reaching towards a target in the same location each time) and a more complex movement (a skilled object-manipulation grasp) provides an internal control of sorts for data analysis. In addition, the task's two sub-movements provide a differential in terms of their likelihood to be affected by the stroke-like injury: proximal muscles (controlling reach) are likely to be less affected by stroke, while distal muscles (controlling grasp) are highly likely to be affected. Lastly, the requirement of the task to execute an object lift maximizes its difficulty and also the potential translational impact of the results on human injury.

The above comments about the task exemplify a strength that is more generally evident: a welcome awareness of clinical relevance, which is in evidence several times throughout the Results and Discussion.

Weaknesses:

The study's weaknesses are mostly minor and, for the most part, correctable.

One concern that may not be correctable in this study: the results about the spatial extent of beta activity seem constrained by relatively poor-quality data. It seems half or more of the electrodes are marked as too noisy to provide useful data in Figure 3. If this reflects the wider reality for all analyses, as mentioned, it may not be correctable for the present study. In that case, perhaps some of the experiments or analyses can be revisited or expanded for a future study, when better electrode yields are available.

We thank the reviewer for their comments. We note that we have chosen to be particularly conservative with which channels we considered noise-free and acceptable for analysis as our animals were not head-posted (see methods: “On each day, trials were manually inspected alongside camera data for any movement or chewing artifacts (note that animals were not head-posted) and were discarded from neural data analysis if there were any artifacts”). After re-visiting our analysis, we note that the data shown in Fig. 3 (spatial distribution of local bursts) is not representative from a data quality perspective – this data was from a session that had a particularly large number of channels discarded due to artifacts. We plan to correct this to show a more representative figure.

Other concerns:

In some places, there is a lack of clarity in the presentation of the results. This is not serious but should be addressed to aid readers' comprehension.

We thank the reviewer for this comment and for their numerous suggestions in the notes to the authors. We plan to address as many of these as we can to improve clarity and comprehension.

Lastly, given the central role of beta oscillations within the study, it would be better for completeness to include even a brief exploration of sustained beta power (rather than bursts), and the modulation of sustained beta (or lack thereof) in the study's areas of concern: behavioral recovery, task performance, etc.

We thank the reviewer for this suggestion – we plan to include this in our revisions.

References cited in response to public reviewer comments:

(1) Ganguly, K., Khanna, P., Morecraft, R. J. & Lin, D. J. Modulation of neural co-firing to enhance network transmission and improve motor function after stroke. Neuron 110, 2363–2385 (2022).

(2) Khanna, P. et al. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912-930.e20 (2021).

(3) Darling, W. G. et al. Sensorimotor Cortex Injury Effects on Recovery of Contralesional Dexterous Movements in Macaca mulatta. Exp Neurol 281, 37–52 (2016).

(4) Bottenfield, K. R. et al. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biology of Sex Differences 12, 54 (2021).

(5) Schwarz, A. et al. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 97, 709– 719 (2025).

(6) Gulati, T. et al. Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. J. Neurosci. 35, 8653–8661 (2015).

(7) Silberstein, P. et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128, 1277–1291 (2005).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation