Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorFlorent GinhouxSingapore Immunology Network, Singapore, Singapore
- Senior EditorSatyajit RathNational Institute of Immunology, New Delhi, India
Reviewer #1 (Public review):
Summary:
Alveolar macrophages (AMs) are key sentinel cells in the lungs, representing the first line of defense against infections. There is growing interest within the scientific community in the metabolic and epigenetic reprogramming of innate immune cells following an initial stress, which alters their response upon exposure to a heterologous challenge. In this study, the authors show that exposure to extracellular ATP can shape AM functions by activating the P2X7 receptor. This activation triggers the relocation of the potassium channel TWIK2 to the cell surface, placing macrophages in a heightened state of responsiveness. This leads to the activation of the NLRP3 inflammasome and, upon bacterial internalization, to the translocation of TWIK2 to the phagosomal membrane, enhancing bacterial killing through pH modulation. Through these findings, the authors propose a mechanism by which ATP acts as a danger signal to boost the antimicrobial capacity of AMs.
Strengths:
This is a fundamental study in a field of great interest to the scientific community. A growing body of evidence has highlighted the importance of metabolic and epigenetic reprogramming in innate immune cells, which can have long-term effects on their responses to various inflammatory contexts. Exploring the role of ATP in this process represents an important and timely question in basic research. The study combines both in vitro and in vivo investigations and proposes a mechanistic hypothesis to explain the observed phenotype.
Weaknesses:
The authors have revised the manuscript to address the comments raised during the first round of review. However, several figures, figure legends, and methodological sections still require additional adjustments and clarification.
The interpretation of CFU from lysates as 'killing' is unclear; lysate CFUs typically reflect intracellular surviving bacteria and are confounded by differences in uptake. Please include an uptake control (early time point) or time-course to distinguish phagocytosis from intracellular killing. Also, clarify how bacterial burden was calculated (supernatant vs cell-associated vs total). Supernatant alone may not capture adherent bacteria. The normalization as 'fold killing' (mean negative control / sample) is non-standard; please report absolute CFU (log scale) and specify the exact definition of killing/survival.
The Methods section is largely incomplete and requires substantial revision. For instance, the authors report quantification of cytokine concentrations, yet no information is provided regarding how these measurements were performed. It is unclear whether cytokines were measured in BALF by ELISA, or assessed at the mRNA level by qPCR from total lung lysates, or by another method. This information must be clearly specified. In addition, the rationale for selecting the measured cytokines should be justified. While the choice of IL-1β and IL-6 is relatively straightforward, the focus on IL-18 requires explicit justification.
Similarly, the methodology used to quantify immune cell populations presented in Figure 2 is not described. It is not stated how immune cells were isolated and identified (e.g. flow cytometry from lung tissue). No information is provided regarding tissue digestion, cell isolation procedures, or gating strategy (presumably by flow cytometry). These details are essential and should be included, together with the corresponding gating strategy and absolute cell numbers.
Moreover, immune cell quantification would be expected in the context of the challenge experiment as well. Reporting unchanged percentages of lung immune cells following ATP exposure does not support the conclusion of a training effect, particularly one that is specific to alveolar macrophages (AMs). In addition, AMs are not considered recruited immune cells; this should be corrected in the figure legend and throughout the manuscript where applicable.
There are inconsistencies throughout the manuscript. For example, the authors report n = 5 for the survival curves in the figure legend, whereas n = 7 is stated in the Methods section. This discrepancy is unclear and should be clarified.
Supplementary Fig. 1 contains major conceptual errors. The volcano plot represents ATAC-seq peaks (differentially accessible chromatin regions), yet the figure, legend, and color scale repeatedly refer to 'genes' and 'differentially expressed genes'. This conflates chromatin accessibility with gene expression and is misleading. Peaks are secondarily annotated to nearby genes, which should be clearly described as an annotation step rather than the unit of analysis. The figure should be revised to explicitly present peak-level statistics (DARs), with gene names shown only as optional annotations. Additionally, the use of simultaneous P < 0.05 and Q < 0.05 thresholds is non-standard, and the absence of down-regulated regions in the plot requires explanation.
In Figure 7, trained WT and Nlrp3⁻/⁻ mice display similar levels of bacterial clearance. How should this result be interpreted?
Overall, while the study addresses an interesting biological question, the manuscript would benefit from substantial revision prior to publication. In particular, clarifications and improvements regarding the methodology, data presentation, and interpretation are required to strengthen the rigor and reproducibility of the conclusions.
Reviewer #2 (Public review):
Summary:
In this manuscript, Thompson et al. investigate the impact of prior ATP exposure on later macrophage functions as a mechanism of immune training. They describe that ATP training enhances bactericidal functions which they connect to the P2x7 ATP receptor, Nlrp3 inflammasome activation, and TWIK2 K+ movement at the cell surface and subsequently at phagosomes during bacterial engulfment. This is an incremental addition to existing literature, which has previously explored how ATP alters TWIK2 and K+, and linked it to Nlrp3 activation. The novelty here is in discovering the persistence of TWIK2 change and exploring the impact this biology may have on bacterial clearance. Additional experiments could strengthen their hypothesis that the in vivo protective effect of ATP-training on bacterial clearance is mediated by alveolar macrophages.
Strengths:
The authors demonstrate three novel findings: 1) prolonged persistence of TWIK2 at the macrophage plasma membrane following ATP that can translocate to the phagosome during particle engulfment, 2) a persistent impact of ATP exposure on remodeling chromatin around nlrp3, and 3) administering mice intra-nasal ATP to 'train' lungs protects mice from otherwise fatal bacterial infection.
Weaknesses:
(1) Some methods remain unclear including the timing and method by which lung cellularity was assessed in Figure 2. It is also difficult to understand how many mice were used in experiments 1, 2 and 6 and thus how rigorous the design was. A specific number is only provided for 1D and the number of mice stated in legend and methods do not match.
(2) The study design is not entirely ideal for the authors' in vivo question. Overall, the discussion would benefit from a clear summary of study caveats, which are primarily that that 1) in vitro studies attributing ATP training-mediated bacterial killing to persistent TWIK2 relocation, K+ influx, a glycolytic metabolic shift , and epigenetic nlrp3 reprogramming were performed in BMDM or RAW cells and not primary AMs, 2) data does not eliminate the possibility that non-AM immune or non-immune cells in the lung are "trained" and responsible for ATP-mediated protection in vivo; flow data examined total lung digest which may obscure important changes in alveolar recruitment, and 3) in vivo work shows data on acute bacterial clearance but does not explore potential risks that "training" for a more responsive inflammasome may have for the severity of lung injury during infection.
(3) The is some lack of transparency on data and rigor of methods. Clear data is not provided regarding the RNA-sequencing results. Specific identities of DEGs is not provided, only one high-level pathway enrichment figure. It would also be ideal if controls were included for subcellular fractionating to confirm pure fractions and for dye microscopy to show negative background.
(4) In results describing 5A, the text states that "ATP-induced macrophage training effects, as measured by augmented bactericidal activity, were diminished in macrophages treated with protease inhibitors". However, these data are not identified significant in the figure; protease dependence can be described as a trend that supports the authors' hypothesis but should not be stated as significant data in text.
In summary, this work contains some useful data showing how ATP can train macrophages via TWIK2/Nlrp3. Revisions have significantly improved methods reporting, added some data to strengthen the conclusions, and toned down on overstatements to bring conclusions more in line with data presented. The title still overstates what the authors have actually tested, since no macrophage-specific targeting in vivo (no conditional gene deletion, macrophage depletion etc) was performed in infection studies. However, in vitro data provide clear evidence that macrophages can be trained by ATP, and through caveats remain, it is plausible that macrophage training is a key mechanism for the protection observed here in the lung.