Bacteria detect neutrophils via a system that responds to hypochlorous acid and flow

  1. Department of Physics & Astronomy, University of California Irvine, Irvine, United States
  2. Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
  3. Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, United States
  4. Department of Ophthalmology, University of California Irvine, Irvine, United States
  5. Department of Physiology and Biophysics, University of California Irvine, Irvine, United States
  6. Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, United States
  7. Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, United States
  8. School of Biological Sciences, University of California Irvine, Irvine, United States
  9. Department of Biomedical Engineering, University of California Irvine, Irvine, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Axel Brakhage
    Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. - Hans-Knöll-Institut (HKI), Jena, 07743, Germany
  • Senior Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa

Reviewer #1 (Public review):

Summary:

Foik et al. report that hypochlorous acid, a reactive chlorine species generated during host defense, activates the transcription of the froABCD in P. aeruginosa. This gene cluster had previously been associated with a potential role during the flow of fluids and appears to be regulated by the sigma factor FroR and its anti-sigma factor FroI. In the present study, the authors show that froABCD is expressed both in neutrophils and macrophages, which they claim is likely a result of HOCl but not H2O2 production. Fro expression is also induced in a murine model of corneal infection, which is characterized by immune cell invasion. Expression of the fro system can be quenched by several antioxidants, such as methionine, cysteine, and others. FroR-deficient cells that lack froABCD expression during HOCl stress appear more sensitive to the oxidant.

Strengths:

The authors provide a number of data supporting their claim that transcription of the froABCD system is induced by reactive chlorine species. This was shown by RNAseq, qRT-PCR, and through microscopy using a transcriptional reporter fusion. Likewise, elevated expression of froABCD was shown in vitro and in vivo, excluding potential in vitro artifacts. The manuscript, while mostly descriptive, is easy to follow, and the data were presented clearly.

Weaknesses:

(1) Lines 60-62: Some of the authors' conclusions are not supported by the data and thus appear unfounded. One example: "we determine that fro upregulation.....These data suggest a novel mechanism..." Their data do not show that MSR upregulation is a direct effect of FroABCD. Instead, it could be possible that the FroR sigma factor also controls the expression of msr genes, which would be independent of froABCD.

(2) The authors show increased fro transcription both in neutrophils and macrophages; however, the two types of immune cells differ quite dramatically with respect to myeloperoxidase activation and HOCl production. Neither has this been discussed nor considered here.

(3) With respect to the activation of fro expression upon challenge with conditioned media from stimulated neutrophils, does the conditioned media contain detectable amounts of HOCl? Do chloramines, which are byproducts of HOCl oxidation with amines, also stimulate expression?

(4) A better control to prove that this fro expression is indeed induced by HOCl in activated neutrophils would be to conduct the experiments in the presence of a myeloperoxidase inhibitor.

(5) The work was conducted with two different P. aeruginosa strains (i.e. AL143 and PAO1F). None of the figure legends provides details on which strain was used. For instance, in line 111, the authors refer to Figure S1B for data that I thought were done with PAO1F, while in 154, data were presented in the context of the infection model, which was conducted with the other strain.

(6) It would be good if immune cell recruitment at 2hrs and 20hrs PI could be quantified.

(7) The conclusions of Figure 4 are, in my opinion, weak (line 187-188; "It is possible that ....."). These antioxidants likely quench the low amounts of NaOCl directly. This would significantly reduce the NaOCl concentrations to a level that no longer activates expression of fro. There is no direct evidence provided that oxidized methionine induces fro expression. Do the authors postulate that this is free methionine, or could methionine and/or cysteine oxidation in FroR increase the binding affinity of the sigma factor to the promoter? Another possibility is that NaOCl deactivates the anti-sigma factor. None of these scenarios has been considered here.

(8) Line 184: The reaction constants of HOCl with Cys and Met are similar.

(9) Treatment with 16 uM NaOCl caused a growth arrest of ~15 hrs in the WT (Figure 5A), whereas no growth at all was recorded with 7.5 uM in Figure 3A.

(10) The concentration range of NaOCl causing fro expression is extremely narrow, while oxidative burst rapidly generates HOCl at much higher concentrations. This should be discussed in more detail.

Reviewer #2 (Public review):

Summary:

Foik et al. studied the regulation of the fro operon in response to HOCl, an oxidant derived from immune cells, especially neutrophils. They use a transcriptional fusion of YFP to the froA promoter in an mCherry-expressing P. aeruginosa strain to determine fro-induction under the microscope. They use this system to study fro expression in medium, in the presence of neutrophils and macrophages, neutrophil-conditioned medium, and several chemical stimuli, including NaCl, HOCl, hydrogen peroxide, nitric acid, hydrochloric acid, and sodium hydroxide. They also use a corneal infection model to demonstrate that froA is upregulated in P. aeruginosa 20 h post-infection and perform transcriptional analyses in WT and a froR mutant in response to HOCl.

Strengths:

Their data clearly shows that HOCl is a strong inducer of the fro Operon. The addition of HOCl-quenching chemicals together with HOCl abrogates the response. They also show that a froR mutant is more susceptible to HOCl than WT. Their transcriptomic data reveal genes under control of the FroR/FroI sigma factor/anti sigma factor system.

Weaknesses:

Although the presented evidence is mostly solid, some of their findings need to be evaluated more carefully; explaining the rationale behind some of the experiments might enhance the article, and some of the models proposed by the authors seem far-fetched, as outlined below:

(1) In line 76 the authors claim "Relative to P. aeruginosa that were incubated in host cell-free media, P. aeruginosa in close proximity to human neutrophils or that were engulfed in mouse macrophages appeared to increase fro expression (Fig. 1C)". Counting bacterial cells in Figure 1C shows that 1 in 17 bacteria (5.8%) induce the froA-promotor in media in the absence of immune cells, while 4 in 72 bacteria (only 5.5%) do the same in the presence of neutrophils. Contrary to the authors' claims, it appears that P. aeruginosa actually decreases fro-expression in close proximity to neutrophils. There is a slight increase in fro-expression in bacteria co-incubated with macrophages (3 in 21, or 14.3%). A more rigorous statistical analysis might substantiate the authors' claim, but, as is, the claim "neutrophils increase fro expression" is untenable.

(2) The authors should explain the rationale behind some of the chemicals used. Why did they use nitric acid? Especially at these high concentrations, a strong acid such as nitric acid might have a significant influence on the medium pH. I understand that the medium is phosphate-buffered, but 25 mM nitric acid in an unbuffered medium would shift the pH well below 2. Similar considerations apply to hydrochloric acid and sodium hydroxide.

(3) In line 187, the authors state that "It is possible that oxidized methionine increases fro expression" and they suggest a model to that effect in Figure 5D. It is unclear why the authors singled out methionine sulfoxide, since a number of other things get oxidized by HOCl. In line 184, the authors state, in the same vein, that "HOCl oxidizes methionine residues 100-fold more rapidly than other cellular components". The authors should state which other cellular compounds they are referring to. Certainly not cysteine and other thiols, which react equally fast and are highly abundant in the cell: P. aeruginosa contains 340 µM GSH, 140 µM CoA-SH (https://doi.org/10.1074/jbc.RA119.009934) plus free cysteine and cysteines in proteins (based on codon usage, 1.34% of amino acids in proteins are cysteine, while methionine is only slightly more present at 2.10%, although a number of starting methionines are removed from mature proteins).

(4) Overall (and this is probably not addressable with the authors' data), some very interesting questions remain unanswered: what is the molecular mechanism of fro-induction? How is the FroR/FroI system modulated by HOCl? Does the system sense free or protein-bound methionine-sulfoxide? Are certain methionine residues in these proteins directly oxidized by HOCl? Many "HOCl-sensing" proteins are also modified at cysteine residues or amino groups; could those play a role? And lastly: what is the connection between shear/fluid flow and HOCl, or are these totally separate mechanisms of fro-induction?

Author response:

We greatly appreciate the efforts of the reviewers, which have provided insightful and helpful comments to improve the manuscript. The feedback touches upon a number of topics, focusing on clarification or justification of experimental techniques and on understanding the mechanism by which P. aeruginosa detects HOCl. All reviewers raised the issue of how HOCl activates fro expression, including whether free or protein-bound methionine, cysteine, or other HOCl byproducts induce this expression. For the upcoming revision, we plan to perform experiments that address this issue and will discuss potential mechanistic models in light of the new data. In addition, we plan to perform additional experiments to address a reviewer’s concerns regarding the dependence of the fro response on HOCl production by neutrophils. The revision will correct imprecise statements pointed out by reviewers, and address all remaining issues requiring clarification or further discussion, including the range of HOCl sensitivity, relationship between HOCl and flow sensitivity, and justification for testing the fro response to nitric acid.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation