Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJohn SchogginsThe University of Texas Southwestern Medical Center, Dallas, United States of America
- Senior EditorJohn SchogginsThe University of Texas Southwestern Medical Center, Dallas, United States of America
Reviewer #1 (Public review):
Summary:
This manuscript presents an extensive body of work and an outstanding contribution to our understanding of the IFN type I and III system in chickens. The research started with the innovative approach of generating KO chickens that lack the receptor for IFNα/β (IFNAR1) or IFN-λ (IFNLR1). The successful deletion and functional loss of these receptors was clearly and comprehensively demonstrated in comparison to the WT. Moreover, the homozygous KO lines (IFNAR1-/- or IFNLR1-/- ) were found to have similar body weights, and normal egg production and fertility compared to their WT counterparts. These lines are a major contribution to the toolbox for the study of avian/chicken immunology.
The significance of this contribution is further demonstrated by the use of these lines by the authors to gain insight into the roles of IFN type I and IFN-type III in chickens, by conducting in ovo and in vivo studies examining basic aspects of immune system development and function, as well as the responses to viral challenges conducted in ovo and in vivo.
Based on solid, state-of the-art methods and convincing evidence from studies comparing various immune system related functions in the IFNAR1-/- or IFNLR1-/- lines to the WT, revealed that the deletion of IFNAR1 and/or IFNLR1 resulted in:
(1) impaired IFN signaling and induction of anti-viral state;
(2) modulation of immune cell profiles in the peripheral blood circulation and spleen;
(3) modulation of the cecum microbiome;
(4) reduced concentrations of IgM and IgY in the blood plasma before and following immunization with model antigen KLH, whereby also line differences in the time-course of the antibody production were observed;
(5) decrease in MHCII+ macrophages and B cells in the spleen of IFNAR1 KO chickens, although the MHCII-expression per cell was not affected in this line; and
(6) reduction in the response of αβ1 TCR+ T cells of IFNAR1 KO chickens as suggested by clonal repertoire analyses.
These studies were then followed by examination of the role of type I and type III IFN in virus infection, using different avian influenza A virus strains as well as an avian gamma corona virus (IBV) in in ovo challenge experiments. These studies revealed: viral titers that reflect virus-species and strain-specific IFN responses; no differences in the secretion of IFN-α/β in both KO compared to the WT lines; a predominant role of type I IFN in inducing the interferon-stimulated gene (ISG) Mx; and that an excessive and unbalanced type I IFN response can harm host fitness (survival rate, length of survival) and contribute to immunopathology.
Based on guidance from the in ovo studies, comprehensive in vivo studies were conducted on host-pathogen interactions in hens from the three lines (WT, IFNAR1 KO, or IFNLR1 KO). These studies revealed the early appearance of symptoms and poor survival of hens from the IFNR1 KO line challenged with H3N1 avian influenza A virus; efficient H#N1 virus replication in IFNAR1 KO hens, increased plasma concentrations of IFNα/β and mRNA expression of IFN-λ in spleens of the IFNAR1 KO hens; a pro-inflammatory role of IFN-λ in the oviduct of hens infected with H3N1 virus; increased proinflammatory cytokine expression in spleens of IFNAR1 KO hens, and Impairment of negative feedback mechanisms regulating IFN-α/β secretion in IFNAR1-KO hens and a significant decrease in this group's antiviral state; additionally it was demonstrated that IFN-α/β can compensate IFN-λ to induce an adequate antiviral state in the spleen during H3N1 infection, but IFN-λ cannot compensate for IFN-α/β signaling in the spleen.
Strengths:
(1) Both the methods and results from the comprehensive, well-designed, and well-executed experiments are considered excellent. The results are well and correctly described in the result narrative and well presented in both the manuscript and supplement Tables and Figures. Excellent discussion/interpretation of results.
(2) The successful generation of the type I and type III IFN KO lines offers unprecedented insight and opens multiple new venues for exploring the IFN system in chickens. The new knowledge reported here is direct evidence of the high impact of this model system on effectively addressing a critical knowledge gap in avian immunology.
(3) The thoughtful selection of highly relevant viruses to poultry and human health for the in ovo and in vivo challenge studies to examine and assess host-pathogen interactions in the IFNR KO and WT lines.
(4) Making use of the unique opportunities in the chicken model to examine and evaluate the host's IFN system responses to various viral challenges in ovo, before conducting challenge studies in hens.
(5) The new knowledge gained from the IFNAR1 and IFNLR1 KO lines will find much-needed application in developing more effective strategies to prevent health challenges like avian influenza and its devastating effects on poultry, humans, and other mammals.
(6) The excellent cooperation and contributions of the co-authors and institutions.
Weaknesses:
No weaknesses were identified by this reviewer.
Reviewer #2 (Public review):
Summary:
This study attempts to dissect the contributions of type I and type III IFNs to the antiviral response in chickens. The first part of the study characterises the generation of IFNAR and IFNLR KO chicken strains and describes basic differences. Four different viruses are then tested in chicken embryos, while the subsequent analysis of the antiviral response in vivo is performed with one influenza H3N1 strain.
Strengths:
Having these two KO chicken strains as a tool is a great achievement. The initial analysis is solid. Clear effect of IFNAR deficiency in in vivo infection, less so for IFNLR deficiency.
Weaknesses:
(1) The antibody induction by KLH immunisation: No data indicated whether or not this vaccination induces IFN responses in wt mice, so the effects observed may be due to steady-state differences or to differential effects of IFN induced during the vaccination phase. No pre-immune results are shown. The differences are relatively small and often found at only one plasma dilution - the whole of Figure 4 could be condensed into one or two panels by proper calculation of Ab titers - would these titres be significantly different? This, as all of the other in vivo experiments, has not been repeated, if I understand the methods section correctly.
(2) The basic conundrum here and in later figures is never addressed by the authors: Situations where IFN type 1 and 3 signalling deficiency each have an independent effect (i.e., Figure 4d) suggest that they act by separate, unrelated mechanisms. However, all the literature about these IFN families suggests that they show almost identical signalling and gene induction downstream of their respective receptors. How can the same signalling, clearly active here downstream of the receptors for IFN type 1 or type 3, be non-redundant, i.e., why does the unaffected IFN family not stand in? This is a major difference from the mouse studies, which showed a rather subtle phenotype when only one of the two IFN systems was missing, but a massive reduction in virus control in double KO mice (the correct primary paper should be quoted here, not only the review by McNab). Reasons could be a direct effect of IFNab on B cells and an indirect effect of IFNL through non-B cells, timing issues, and many other scenarios can be envisaged. The authors do not address this question, which limits the depth of analysis.
(3) In the one in vivo experiment performed with chickens, only one virus was tested; more influenza strains should be included, as well as non-influenza viruses.
(4) The basic conundrum of point 2 applies equally to Figure 6a; both KOs have a phenotype. Again in 6d, both IFNs appear to be separately required for Mx induction. An explanation is needed.
(5) Line 308, where are the viral titers you refer to in the text? The statement that the results demonstrate that excessive IFNab has a negative impact is overstretched, as no IFN measurements of the infected embryos are shown here.
(6) The in vivo infection is the most interesting experiment, and the key outcome here is that IFN type 1 is crucial for anti-H3N1 protection in chickens, while type 3 is less impactful. However, this experiment suffers from the different time points when chickens were culled, so many parameters are impossible to compare (e.g., weight loss, histopathology, IFN measurements, and more). Many of these phenomena are highly dynamic in acute virus infections, so disparate time points do not allow a meaningful comparison between different genotypes. What are the stats in 7b? Is the median rather than the mean indicated by the line? Otherwise, the lines appear in surprising places. SD must be shown, and I find it difficult to believe that there is a significant difference in weight, for e.g., IFNAR KO, unless maybe with a paired t test. What is the statistical test?
(7) Figures 7e,f: these comparisons are very difficult to interpret as the virus loads at these time points already differ significantly, so any difference could be secondary to virus load differences.