How attention simplifies mental representations for planning

  1. Department of Experimental Psychology, University College London, London, United Kingdom
  2. Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom
  3. Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
  4. Canadian Institute for Advanced Research (CIFAR), Brain, Mind and Consciousness Program, Toronto, Canada

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Nathan Faivre
    Centre National pour la Recherche Scientifique et Technique (CNRST), Grenoble, France
  • Senior Editor
    Michael Frank
    Brown University, Providence, United States of America

Reviewer #1 (Public review):

Summary: This study investigated how visuospatial attention influences the way people build simplified mental representations to support planning and decision-making. Using computational modeling and virtual maze navigation, the authors examined whether spatial proximity and the spatial arrangement of obstacles determine which elements are included in participants' internal models of a task. The study developed and tested an extension of the value-guided construal (VGC) model that incorporates features of spatial attention for selecting simpler task mental representation.

Strengths:

(1) Original Perspective: The study introduces an explicit attentional component to established models of planning, offering an approach that bridges perception, attention, and decision-making.

(2) Methodological Approach: The combination of computational modeling, behavioral data, and eye-tracking provides converging measures to assess the relationship between attention and planning representations.

(3) Cross-validated data: The study relies on the analysis of three separate datasets, two already published and an additional novel one. This allows for cross-validation of the findings and enhances the robustness of the evidence.

(4) Focus on Individual Differences: Reports of how individual variability in attentional "spillover" correlates with the sparsity of task representations and spatial proximity add depth to the analysis.

Weaknesses:

(1) Clarity of the VGC model and behavioral task: The exposition of the VGC model lacks sufficient detail for non-expert readers. It is not clear how this model infers which maze obstacles are relevant or irrelevant for planning, nor how the maze tasks specifically operationalize "planning" versus other cognitive processes.

The method for classifying obstacles as relevant or irrelevant to the task and connecting metacognitive awareness (i.e., participants' reports of noticing obstacles) to attentional capture is not well justified. The rationale for why awareness serves as a valid attention proxy, as opposed to behavioral or neurophysiological markers, should be clearer.

(2) Attention framework: The account of attention is largely limited to the "spotlight" model. When solving a maze, participants trace the correct trail, following it mentally with their overt or covert attention. In this perspective, relevant concepts are also rooted in attention literature pertaining to object-based attention using tasks like curve tracing (e.g., Pooresmaeili & Roelfsema, 2014) and to mental maze solving (e.g., Wong & Scholl, 2024), which may be highly relevant and add nuance to the current work. This view of attention may be more pertinent to the task than models of simultaneously tracking multiple objects cited here. Prior work (notably from the Roelfsema group) indicates that attentional engagement in curve-tracing tasks may be a continuous, bottom-up process that progressively spreads along a trajectory, in time and space, rather than a "spotlight" that simply travels along the path. The spread of attention depends on the spatial proximity to distractors - a point that could also be pertinent to the findings here.

Moreover, the tracing of a "solution" trail in a maze may be spontaneous and not only a top-down voluntary operation (Wong & Scholl, 2024), a finding that requires a more careful framing of the link to conscious perception discussed in the manuscript.

Conceptualizing attention as a spatial spotlight may therefore oversimplify its role in navigation and planning. Perhaps the observed attentional modulation reflects a perceptual stage of building the trail in the maze rather than a filter for a later representation for more efficient decision making and planning. A fuller discussion of whether the current model and data can distinguish between these frameworks would benefit readers.

(3) Lateralization of attention: The analysis considers whether relevant information is distributed bilaterally or unilaterally across the visual display, but does not sufficiently address evidence for attentional asymmetries across the left and right visual fields due to hemispheric specialization (e.g., Bartolomeo & Seidel Malkinson, 2019). Whether effects differ for left versus right hemifield arrangements is not made explicit in the presented findings.

(4) Individual differences: Individual differences in attentional modulation are a strength of the work, but similar analyses exploring individual variation in lateralization effects could provide further insight, and the lack of such analyses may mask important effects.

(5) Distinction between overt and covert attention: The current report at times equates eye movement patterns with the locus of attention. However, attention can be covertly shifted without corresponding gaze changes (see, for example, Pooresmaeili & Roelfsema, 2014).

The implications for interpreting the relationship between eye movement, memory, and attention in this setting are not fully addressed. The potential dynamics of attention along a maze trajectory and their impact on lateralization analysis would benefit from further clarification.

Appraisal of Aims and Results:

The study sets out to determine how spatial attention shapes the construction of task representations in planning contexts. The authors provide evidence that spatial proximity and arrangement influence which environmental features are incorporated into internal models used for navigation, and that accounting for these effects improves model predictions. There is clear documentation of individual variation, with some participants showing greater attentional spillover and more sparse awareness profiles.

However, some conceptual and methodological aspects would be clearer with greater engagement with the broader literature on attention dynamics, a more explicit justification of operational choices, and more targeted lateralization analyses.

Reviewer #2 (Public review):

Summary:

Castanheira et al. investigate the role of spatial attention for planning during three maze navigation experiments (one new experiment and two existing datasets). Effective planning in complex situations requires the construction of simplified representations of the task at hand. The authors find that these mental representations (as assessed by conscious awareness) of a given stimulus are influenced by (spatially) surrounding stimuli. Individual participants varied in the degree to which attention influenced their task representations, and this attentional effect correlated with the sparsity of representations (as measured by the range of awareness reports across all stimuli). Spatially grouping task-relevant information on either the left or right side of the maze led to mental representations more similar to optimal representations predicted by the value-guided construal (VGC) model - a normative model describing a theoretical approach to simplifying complex task information. Finally, the authors propose an update to this model, incorporating an attentional spotlight component; the revised descriptive model predicts empirical task representations better than the original (normative) VGC model.

Strengths:

The novelty of this study lies in the proposal and investigation of a cognitive mechanism through which a normative model like value-guided construal can enable human planning. After proposing attention as this mechanism, the authors make concrete hypotheses about mismatches between the VGC predictions and real human behavior, which are experimentally validated. Thus, not only does this study describe a possible mechanism for simplification of task information for planning, but the authors also propose a descriptive model, revising VGC to incorporate this attentional component.

A strength of this paper is the variety of investigative approaches: analysis of existing data, novel experiment, and a computational approach to predict experimental findings from a theoretical model. Analyzing pre-existing datasets increases the size of the participant cohort and strengthens the authors' conclusions. Meanwhile, comparing the predictions of the existing normative model and the authors' own refined model is a clever approach to substantiate their claims. In addition, the authors describe several crucial controls, which are key to the interpretability of their results. In particular, the eye tracking results were critical.

In summary, this paper constitutes an important step toward a more complete understanding of the human ability to plan.

Weaknesses:

(1) There is a critical conceptual gap in the study and its interpretation, mainly due to the reliance on a self-report metric of awareness (rather than an objective measure of behavioral performance).

a. Awareness is tested by a 9-point self-report scale. It is currently unclear why awareness of task-irrelevant obstacles in this task would necessarily compromise optimal planning. There is no indication of whether self-reported awareness affects performance (e.g., navigation path distance, time to complete the maze, number of errors). Such behavioral evidence of planning would be more compelling.

b. Relatedly, it would have been more convincing to have an objective measure of awareness, for instance, how the presence or absence of a "task-irrelevant" obstacle affects performance (e.g., change navigation path distance or time to complete the maze), or whether participants can accurately recall the location of obstacles.

c. Consequently, I'm not sure that we can conclude that the spatial context does impact participants' ability to plan spatial navigation or to "incorporate task-relevant information into their construal". We know that the spatial context affects subjective (self-reported) awareness, but the authors do not present evidence that spatial context affects behavioral performance.

d. Another concern that may complicate interpretation is the following: Figure 3c shows improved VGC model predictions (steeper slope) for mazes with greater lateralization. However, there are notable outliers in these plots, where a high lateralization index does not correspond to good model performance. There is currently no discussion/explanation of these cases.

(2) I noticed an issue with clarity regarding task-relevance. It is currently not fully clear which obstacles are "task irrelevant". Also, the term is used inconsistently, sometimes conflating with "awareness". For example, in the "Attentional spotlight model of task representations" section, the authors state that "task-relevant information becomes less relevant when surrounded by task-irrelevant information". But they really mean that participants become less aware of those task-relevant obstacles. I assume task-relevance is an objective characteristic related to maze organization, not to a participant's construal. Indeed, the following paragraph provides evidence of model predictions of awareness.

(3) The behavioral paradigm has some distinct disadvantages, and the validity of the task is not backed up by behavioral data.

a. I understand the need for central fixation, but it also makes the task less naturalistic.

b. The task with its top-down grid view does not seem to mimic real human navigation. Though this grid may be similar to mental maps we form for navigation, the sensory stimuli corresponding to possible paths and to spatial context during real-life navigation are very different.

c. Behavioral performance is not reported, so it is unknown whether participants are able to properly complete the task. The task seems pretty difficult to navigate, especially when the obstacles disappear, and in combination with the central fixation.

d. There is no discussion of whether/how this navigation task generalizes to other forms of planning.

Reviewer #3 (Public review):

Summary:

The authors build on a recent computational model of planning, the "value-guided construal" framework by Ho et al. (2022), which proposes that people plan by constructing simple models of a task, such as by attending to a subset of obstacles in a maze. They analyze both published experimental data and new experimental data from a task in which participants report attention to objects in mazes. The authors find that attention to objects is affected by spatial proximity to other objects (i.e., attentional overspill) as well as whether relevant objects are lateralized to the same hemifield. To account for these results, the authors propose a "spotlight-VGC" model, in which, after calculating attention scores based on the original VGC model, attention to objects is enhanced based on distance. They find that this model better explains participant responses when objects are lateralized to different hemifields. These results demonstrate complex interactions between filtering of task-relevant information and more classical signatures of attentional selection.

Strengths:

(1) The paper builds on existing modeling work in a novel manner and integrates classic results on attention into the computational framework.

(2) The authors report new and extensive analyses of existing data that shed light on additional sources of systematic variability in responses related to attentional spillover effects

(3) They collect new data using new stimuli in the original paradigm that directly test predictions related to the lateralization of task-relevant information, including eye tracking data that allows them to control for possible confounds.

(4) The extended model (spotlight-VGC) provides a formal account of these new results.

Weaknesses:

(1) The spotlight-VGC model has a free parameter - the "width" of the attentional spotlight. This seems to have been fixed to be 3 squares. It would be good if the authors could describe a more principled procedure for selecting the width so that others can use the model in other contexts.

(2) Have the authors considered other ways in which factors such as attentional spillover and lateralization could be incorporated into the model? The spotlight-VGC model, as presented, involves first computing VGC predictions and only afterwards computing spillover. This seems psychologically implausible, since it supposes that the "optimal" representation is first formed and then it gets corrupted. Is there a way to integrate these biases directly into the VGC framework, perhaps as a prior on construals? The authors gesture towards this when they talk about "inductive biases", but this is not formalized.

(3) Can the authors rule out that the lateralization effects are the result of memory biases since the main measure used is a self-report of attention?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation