Spectraplakin cooperates with noncentrosomal microtubule regulators to orient dendritic microtubules in Drosophila

  1. Institute for Neurobiology, Multiscale Imaging Center, University of Münster, Münster, Germany
  2. Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, United States
  3. Department of Biology, University of York, York, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Kassandra Ori-McKenney
    University of California, Davis, United States of America
  • Senior Editor
    Sofia Araújo
    Universitat de Barcelona, Barcelona, Spain

Reviewer #1 (Public review):

Summary:

The Neuronal microtubule cytoskeleton is essential long long-range transport in axons and dendrites. The axon-specific plus-end out microtubule organization vs the dendritic-specific plus-end in organization allows for selective transport into each neurite, setting up neuronal polarity. In addition, the dendritic microtubule organization is thought to be important for dendritic pruning in Drosophila during metamorphosis. However, the precise mechanisms that organize microtubules in neurons are still incompletely understood.

In the current manuscript, the authors describe the spectraplakin protein Shot as important in developmental dendritic pruning. They find that Shot has dendritic microtubule polarity defects, which, based on their rescues and previous work, is likely the reason for the pruning defect.

Since Shot is a known actin-microtubule crosslinker, they also investigate the putative role of actin and find that actin is also important for dendritic pruning. Finally, they find that several factors that have been shown to function as a dendritic MTOC in C. elegans also show a defect in Drosophila upon depletion.

Strengths:

Overall, this work was technically well-performed, using advanced genetics and imaging. The author reports some interesting findings identifying new players for dendritic microtubule organization and pruning.

Weaknesses:

The evidence for Shot interacting with actin for its functioning is contradictory. The Shot lacking the actin interaction domain did not rescue the mutant; however, it also has a strong toxic effect upon overexpression in wildtype (Figure S3), so a potential rescue may be masked. Moreover, the C-terminus-only construct, which carries the GAS2-like domain, was sufficient to rescue the pruning. This actually suggests that MT bundling/stabilization is the main function of Shot (and no actin binding is needed). On the other hand, actin depolymerization leads to some microtubule defects and subtle changes in shot localization in young neurons (not old ones). More importantly, it did not enhance the microtubule or pruning defects of the Shot domain, suggesting these act in the same pathway. Interesting to note is that Mical expression led to microtubule defects but not to pruning defects. This argues that MT organization effects alone are not enough to cause pruning defects. This may be be good to discuss. For the actin depolymerization, the authors used overexpression of the actin-oxidizing Mical protein. However, Mical may have another target. It would be good to validate key findings with better characterized actin targeting tools.

In analogy to C. elegans, where RAB-11 functions as a ncMTOC to set up microtubules in dendrites, the authors investigated the role of these in Drosophila. Interestingly, they find that rab-11 also colocalizes to gamma tubulin and its depletion leads to some microtubule defects. Furthermore, they find a genetic interaction between these components and Shot; however, this does not prove that these components act together (if at all, it would be the opposite). This should be made more clear. What would be needed to connect these is to address RAB-11 localization + gamma-tubulin upon shot depletion.

All components studied in this manuscript lead to a partial reversal of microtubules in the dendrite. However, it is not clear from how the data is represented if the microtubule defect is subtle in all animals or whether it is partially penetrant stronger effect (a few animals/neurons have a strong phenotype). This is relevant as this may suggest that other mechanisms are also required for this organization, and it would make it markedly different from C. elegans. This should be discussed and potentially represented differently.

Reviewer #2 (Public review):

Summary:

In their manuscript, the authors reveal that the spectraplakin Shot, which can bind both microtubules and actin, is essential for the proper pruning of dendrites in a developing Drosophila model. A molecular basis for the coordination of these two cytoskeletons during neuronal development has been elusive, and the authors' data point to the role of Shot in regulating microtubule polarity and growth through one of its actin-binding domains. The authors also propose an intriguing new activity for a spectraplakin: functioning as part of a microtubule-organizing center (MTOC).

Strengths:

(1) A strength of the manuscript is the authors' data supporting the idea that Shot regulates dendrite pruning via its actin-binding CH1 domain and that this domain is also implicated in Shot's ability to regulate microtubule polarity and growth (although see comments below); these data are consistent with the authors' model that Shot acts through both the actin and microtubule cytoskeletons to regulate neuronal development.

(2) Another strength of the manuscript is the data in support of Rab11 functioning as an MTOC in young larvae but not older larvae; this is an important finding that may resolve some debates in the literature. The finding that Rab11 and Msps coimmunoprecipitate is nice evidence in support of the idea that Rab11(+) endosomes serve as MTOCs.

Weaknesses:

(1) A significant, major concern is that most of the authors' main conclusions are not (well) supported, in particular, the model that Shot functions as part of an MTOC. The story has many interesting components, but lacks the experimental depth to support the authors' claims.

(2) One of the authors' central claims is that Shot functions as part of a non-centrosomal MTOC, presumably a MTOC anchored on Rab11(+) endosomes. For example, in the Introduction, last paragraph, the authors summarize their model: "Shot localizes to dendrite tips in an actin-dependent manner where it recruits factors cooperating with an early-acting, Rab11-dependent MTOC." This statement is not supported. The authors do not show any data that Shot localizes with Rab11 or that Rab11 localization or its MTOC activity is affected by the loss of Shot (or otherwise manipulating Shot). A genetic interaction between Shot and Rab11 is not sufficient to support this claim, which relies on the proteins functioning together at a certain place and time. On a related note, the claim that Shot localization to dendrite tips is actin-dependent is not well supported: the authors show that the CH1 domain is needed to enrich Shot at dendrite tips, but they do not directly manipulate actin (it would be helpful if the authors showed the overexpression of Mical disrupted actin, as they predict).

(3) The authors show an image that Shot colocalizes with the EB1-mScarlet3 comet initiation sites and use this representative image to generate a model that Shot functions as part of an MTOC. However, this conclusion needs additional support: the authors should quantify the frequency of EB1 comets that originate from Shot-GFP aggregates, report the orientation of EB1 comets that originate from Shot-GFP aggregates (e.g., do the Shot-GFP aggregates correlate with anterogradely or retrogradely moving EB1 comets), and characterize the developmental timing of these events. The genetic interaction tests revealing ability of shot dsRNA to enhance the loss of microtubule-interacting proteins (Msps, Patronin, EB1) and Rab11 are consistent with the idea that Shot regulates microtubules, but it does not provide any spatial information on where Shot is interacting with these proteins, which is critical to the model that Shot is acting as part of a dendritic MTOC.

(4) It is unclear whether the authors are proposing that dendrite pruning defects are due to an early function of Shot in regulating microtubule polarity in young neurons (during 1st instar larval stages) or whether Shot is acting in another way to affect dendrite pruning. It would be helpful for the authors to present and discuss a specific model regarding Shot's regulation of dendrite pruning in the Discussion.

(5) The authors argue that a change in microtubule polarity contributes to dendrite pruning defects. For example, in the Introduction, last paragraph, the authors state: "Loss of Shot causes pruning defects caused by mixed orientation of dendritic microtubules." The authors show a correlative relationship, not a causal one. In Figure 4, C and E, the authors show that overexpression of Mical disrupts microtubule polarity but not dendrite pruning, raising the question of whether disrupting microtubule polarity is sufficient to cause dendrite pruning defects. The lack of an association between a disruption in microtubule polarity and dendrite pruning in neurons overexpressing Mical is an important finding.

(6) The authors show that a truncated Shot construct with the microtubule-binding domain, but no actin-binding domain (Shot-C-term), can rescue dendrite pruning defects and Khc-lacZ localization, whereas the longer Shot construct that lacks just one actin-binding domain ("delta-CH1") cannot. Have the authors confirmed that both proteins are expressed at equivalent levels? Based on these results and their finding that over-expression of Shot-delta-CH1 disrupts dendrite pruning, it seems possible that Shot-delta-CH1 may function as a dominant-negative rather than a loss-of-function. Regardless, the authors should develop a model that takes into account their findings that Shot, without any actin-binding domains and only a microtubule-binding domain, shows robust rescue.

(7) The authors state that: "The fact that Shot variants lacking the CH1 domain cannot rescue the pruning defects of shot[3] mutants suggested that dendrite tip localization of Shot was important for its function." (pages 10-11). This statement is not accurate: the Shot C-term construct, which lacks the CH1 domain (as well as other domains), is able to rescue dendrite pruning defects.

(8) The authors state that: "In further support of non-functionality, overexpression of Shot[deltaCH1] caused strong pruning defects (Fig. S3)." (page 8). Presumably, these results indicate that Shot-delta-CH1 is functioning as a dominant-negative since a loss-of-function protein would have no effect. The authors should revise how they interpret these results. This comment is related to another comment about the ability of Shot constructs to rescue the shot[3] mutant.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation