Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorRichard NaudUniversity of Ottawa, Ottawa, Canada
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public review):
Summary:
From a big picture viewpoint, this work aims to provide a method to fit parameters of reduced models for neural dynamics so that the resulting tuned model has a bifurcation diagram that matches that of a more complex, computationally expensive model. The matching of bifurcation diagrams ensures that the model dynamics agree on a region of parameter space, rather than just at specially tuned values, and that the models share properties such as qualitative features of their phase response curves, as the authors demonstrate. A notable point is the inclusion of extracellular potassium concentration dynamics into the reduced model - here, the quadratic integrate-and-fire model; this is straightforward but nonetheless useful for studying certain phenomena.
Strengths:
The paper demonstrates the method specifically on the fitting of the quadratic integrate-and-fire model, with potassium concentration dynamics included, to the Wang-Buzsaki model extended to include the potassium component. The method works very well overall in this instance. The resulting model is thoroughly compared with the original, in terms of bifurcation diagrams, production of various activity patterns, phase response curves, and associated phase-locking and synchronization properties.
Weaknesses:
It is important to note that the proposed method requires that a target bifurcation diagram be known. In practical terms, this means that the method may be well suited to fitting a reduced model to another, more complicated model, but is not likely to be useful for fitting the model to data. Certainly, the authors did not illustrate any such application. Secondly, the authors do not provide any sort of general algorithm but rather give a demonstration of a single example of fitting one specific reduced model to one specific conductance-based model. Finally, the main idea of the paper seems to me to be a natural descendant of the chain of reasoning, starting from Rinzel - continuing through Bertram; Golubitsky/Kaper/Josic; Izhikevich; and others - that a fundamental way to think about neuronal models, especially those involving bursting dynamics, is in terms of their bifurcation structure. According to this line of reasoning, two models are "the same" if they have the same bifurcation structure. Thus, it becomes natural to fit a reduced model to a more complicated model based on the bifurcation structure. The authors deserve credit for recognizing and implementing this step, and their work may be a useful example to the community. But the manuscript should have described and cited this chain of works to put the current study in the correct context.
Reviewer #2 (Public review):
Summary:
The authors derive an integrate-and-fire model to describe the dynamics of a more complex Wang-Buzsaki model and compare the two models. A detailed discussion of bifurcation schemes in both models is convincing and allows us to evaluate the simpler model.
Strengths:
The idea is interesting, and the mathematical approach appears to be convincing. In addition, differences between the simple and original models are also discussed.
Weaknesses:
A comparison to experimental data is necessary to support the theoretical work.