The Multifaceted Role of EXOC6A in Ciliogenesis

  1. Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
  2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
  3. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jens Lüders
    Institute for Research in Biomedicine, Barcelona, Spain
  • Senior Editor
    Felix Campelo
    Universitat Pompeu Fabra, Barcelona, Spain

Reviewer #1 (Public review):

Summary:

The study by Lin et al. studies the role of EXOC6A in ciliogenesis and its relationship with the interactor myosin-Va using a range of approaches based on the RPE1 cell line model. They establish its spatio-temporal organization at centrioles, the forming ciliary vesicle and ciliary sheath using ExM, various super-resolution techniques, and EM, including correlative light and electron microscopy. They also perform live imaging analyses and functional studies using RNAi and knockout. They establish a role of EXOC6A together with myosin-Va in Golgi-derived, microtubule- and actin-based vesicle trafficking to and from the ciliary vesicle and sheath membranes. Defects in these functions impair robust ciliary shaft and axoneme formation due to defective transition zone assembly.

Strengths:

The study provides very high-quality data that support the conclusions. In particular, the imaging data is compelling. It also integrates all findings in a model that shows how EXOC6A participates in multiple stages of ciliogenesis and how it cooperates with other factors.

Weaknesses:

The precise role of EXOC6A remains somewhat unclear. While it is described as a component of the exocyst, the authors do not address its molecular functions and whether it indeed works as part of the exocyst complex during ciliogenesis.

Reviewer #2 (Public review):

Summary:

The molecular mechanisms underlying ciliogenesis are not well understood. Previously, work from the same group (Wu et al., 2018) identified myosin-Va as an important protein in transporting preciliary vesicles to the mother vesicles, allowing for initiation of ciliogenesis. The exocyst complex has previously been implicated in ciliogenesis and protein trafficking to cilia. Here, Lin et al. investigate the role of exocyst complex protein EXOC6A in cilia formation. The authors find that EXOC6A localizes to preciliary vesicles, ciliary vesicles, and the ciliary sheath. EXOC6A colocalizes with Myo-Va in the ciliary vesicle and the ciliary sheath, and both proteins are removed from fully assembled cilia. EXOC6A is not required for Myo-Va localization, but Myo-VA and EHD1 are required for EXOC6A to localize in ciliary vesicles. The authors propose that EXOC6A vesicles continually remodel the cilium: FRAP analysis demonstrates that EXOC6A is a dynamic protein, and live imaging shows that EXOC6A fuses with and buds off from the ciliary membrane. Loss of EXOC6A reduces, but does not eliminate, the number of cilia formed in cells. Any cilia that are still present are structurally abnormal, with either bent morphologies or the absence of some transition zone proteins. Overall, the analyses and imaging are well done, and the conclusions are well supported by the data. The work will be of interest to cell biologists, especially those interested in centrosomes and cilia.

Strengths:

The TEM micrographs are of excellent quality. The quality of the imaging overall is very good, especially considering that these are dynamic processes occurring in a small region of the cell. The data analysis is well done and the quantifications are very helpful. The manuscript is well-written and the final figure is especially helpful in understanding the model.

Weaknesses:

Additional information about the functional and mechanistic roles of EXOC6A would improve the manuscript greatly.

Reviewer #3 (Public review):

Summary:

Lin et al report on the dynamic localization of EXOC6A and Myo-Va at pre-ciliary vesicles, ciliary vesicles, and ciliary sheath membrane during ciliogenesis using three-dimensional structured illumination microscopy and ultrastructure expansion microscopy. The authors further confirm the interaction of EXOC6A and Myo-Va by co-immunoprecipitation experiments and demonstrated the requirement of EHD1 for the EXOC6A-labeled ciliary vesicles formation. Additional experiments using gene-silencing by siRNA and pharmacological tools identified the involvement of dynein-, microtubule-, and actin in the transport mechanism of EXOC6A-labeled vesicles to the centriole, as they have previously reported for Myo-Va. Notably, loss of EXOC6A severely disrupts ciliogenesis, with the majority of cells becoming arrested at the ciliary vesicle (CV) stage, highlighting the involvement of EXOC6A at later stages of ciliogenesis. As the authors observe dynamic EXOC6A-positive vesicle release and fusion with the ciliary sheath, this suggests a role in membrane and potentially membrane protein delivery to the growing cilium past the ciliary vesicle stage. While CEP290 localization at the forming cilium appears normal, the recruitment of other transition zone components, exemplified by several MKS and NPHP module components, was also impaired in EXOC6A-deficient cells.

Strengths:

(1) By applying different microscopy approaches, the study provides deeper insight into the spatial and temporal localization of EXOC6A and Myo-Va during ciliogenesis.

(2) The combination of complementary siRNA and pharmacological tools targeting different components strengthens the conclusions.

(3) This study reveals a new function of EXOC6A in delivering membrane and membrane proteins during ciliogenesis, both to the ciliary vesicle as well as to the ciliary sheath.

(4) The overall data quality is high. The investigation of EXOC6A at different time points during ciliogenesis is well schematized and explained.

Weaknesses:

(1) Since many conclusions are based on EXOC6A immunostaining, it would strengthen the study to validate antibody specificity by demonstrating the absence of staining in EXOC6A-deficient cells.

(2) While the authors generated an EXOC6A-deficient cell line, off-target effects can be clone-specific. Validating key experiments in a second independent knockout clone or rescuing the phenotype of the existing clone by re-expressing EXOC6A would ensure that the observed phenotypes are due to EXOC6A loss rather than unintended off-target effects.

(3) Some experimental details are lacking from the materials and methods section. No information on how the co-immunoprecipitation experiments have been performed can be found. The concentrations of pharmacological agents should be provided to allow proper interpretation of the results, as higher or lower doses can produce nonspecific effects. For example, the concentrations of ciliobrevin and nocodazole used to treat RPE1 cells are not specified and should be included. More precise settings for the FRAP experiments would help others reproduce the presented data. Some details for the siRNA-based knockdowns, such as incubation times, can only be found in the figure legends.

Taken together, the authors achieved their goal of elucidating the role of EXOC6A in ciliogenesis, demonstrating its involvement in vesicle trafficking and membrane remodeling in both early and late stages of ciliogenesis. Their findings are supported by experimental evidence. This work is likely to have an impact on the field by expanding our understanding of the molecular machinery underlying cilia biogenesis, particularly the coordination between the exocyst complex and cytoskeletal transport systems. The methods and data presented offer valuable tools for dissecting vesicle dynamics and cilium formation, providing a foundation for future research into ciliary dysfunction and related diseases. By connecting vesicle trafficking to structural maturation of an organelle, the study adds important context to the broader description of cellular architecture and organelle biogenesis.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation