Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJimena BerniUniversity of Sussex, Brighton, United Kingdom
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
The importance of RNA editing in producing protein diversity is a widespread process that can regulate how genes function in various cellular contexts. Despite the importance of the process, we still lack a thorough knowledge of the profile of RNA editing targets in known cells. Crane and colleagues take advantage of a recently acquired scRNAseq database for Drosophila type Ib and Is larval motoneurons and identify the RNA editing landscape that differs in those cells. They find both canonical (A --> I) and non-canonical sites and characterize the targets, their frequencies, and determine some of the "rules" that influence RNA editing. They compare their database with existing databases to determine a reliance on the most well-known deaminase enzyme ADAR, determine the activity-dependence of editing profiles, and identify editing sites that are specific to larval Drosophila, differing from adults. The authors also identify non-canonical editing sites, especially in the newly appreciated and identified regulator of synaptic plasticity, Arc1.
The paper represents a strong analysis of recently made RNAseq databases from their lab and takes a notable approach to integrate this with other databases that have been recently produced from other sources. One of the places where this manuscript succeeds is in a thorough approach to analyzing the considerable amount of data that is out there regarding RNAseq in these differing motoneurons, but also in comparing larvae to adults. This is a strong advance. It also enables the authors to begin to determine rules for RNA editing. From an analytical standpoint, this paper is a notable advance in seeking to provide a biological context for massive amounts of data in the field. Further, it addresses some biological aspects in comparing WT and adar mutants to assess one potential deaminase, addresses activity-dependence, and begins to reveal profiles of canonical and non-canonical editing.
Reviewer #2 (Public review):
Summary:
The study uses single-neuron Patch-seq RNA sequencing in two subgroups of Drosophila larval motoneurons (1s and 1b) and identifies 316 high-confidence canonical mRNA edit sites, which primarily (55%) occur in the coding regions of the mRNAs (CDS). Most of the canonical mRNA edits in the CDS regions include neuronal and synaptic proteins such as Complexin, Cac, Para, Shab, Sh, Slo, EndoA, Syx1A, Rim, RBP, Vap33, and Lap, which are involved in neuronal excitability and synaptic transmission. Of the 316 identified canonical edit sites, 60 lead to missense RNAs in a range of proteins (nAChRalpha5, nAChRalpha6, nAChRbeta1, ATPalpha, Cacophony, Para, Bsk, Beag, RNase Z) that are likely to have an impact on the larval motoneurons' development and function. Only 27 sites show editing levels higher than 90% and a similar editing profile is observed between the 1s and 1b motoneurons when looking at the number of edit sites and the fraction of reads edited per cell, with only 26 RNA editing sites showing a significant difference in the editing level. The variability of edited and unedited mRNAs suggests stochastic editing. The two subsets of motoneurons show many noncanonical editing sites, which, however, are not enriched for neuron-specific genes, therefore causing more silent changes compared to canonical editing sites. Comparison of the mRNA editing sites and editing rate of the single neuron Patch-seq RNA sequencing dataset to three other RNAseq datasets, one from same stage larval motoneurons and two from adult heads nuclei, show positive correlations in editing frequencies of CDS edits between the patch-sec larval 1b + 1s MNs and all other three datasets, with stronger correlations for previously annotated edits and weaker correlations for unannotated edits. Several of the identified editing targets are only present in the single neuron Patch-seq RNA sequencing dataset, suggesting cell-type-specific or developmental-specific editing. Editing appears to be resistant to changes in neuronal activity as only a few sites show evidence of being activity-regulated.
Strengths:
The study employs GAL4 driver lines available in the Drosophila model to identify two subtypes of motoneurons with distinct biophysical and morphological features. In combination with single-neuron Patch-seq RNA sequencing, it provides a unique opportunity to identify RNA editing sites and rates specific to specific motoneuron subtypes. The RNA seq data is robustly analysed, and high-confidence mRNA edit sites of both canonical and noncanonical RNA editing are identified.
The mRNA editing sites identified from the single neuron Patch-seq RNA sequencing data are compared to editing sites identified across other RNAseq datasets collected from animals at similar or different developmental stages, allowing for the identification of editing sites that are common to all or specific to a single dataset.
Weaknesses:
Although the analysed motoneurons come from two distinct subtypes, it is unclear from how many Drosophila larvae the motoneurons were collected and from which specific regions along the ventral nerve cord (VNC). Therefore, the study does not consider possible differences in editing rate between samples from different larvae that could be in different active states or neurons located at different regions of the VNC, which would receive inputs from slightly different neuronal networks.
The RNA samples include RNAs located both in the nucleus and the cytoplasm, introducing a potential compartmental mismatch between the RNA and the enzymes mediating the editing, which could influence editing rate. Similarly, the age of the RNAs undergoing editing is unknown, which may influence the measured editing rates.
Reviewer #3 (Public review):
Summary:
The study consists of extensive computational analyses of their previously released Patch-seq data on single MN1-Ib and MNISN-Is neurons. The authors demonstrate the diversity of A>I editing events at single-cell resolution in two different neuronal cell types, identifying numerous A>I editing events that vary in their proportion, including those that cause missense mutations in conserved amino acids. They also consider "noncanonical" edits, such as C>T and G>A, and integrate publicly available data to support these analyses.
In general, the study contains a valuable resource to assess RNA editing in single neurons and opens several questions regarding the diversity and functional implications of RNA editing at single-cell resolution. The conclusions from the study are generally supported by their data; however, the study is currently based on computational predictions and would therefore benefit from experimentation to support their hypotheses and demonstrate the effects of the editing events identified on neuronal function and phenotype.
Strengths:
The study uses samples that are technically difficult to prepare to assess cell-type-specific RNA editing events in a natural model. The study also uses public data from different developmental stages that demonstrate the importance of considering cell type and developmental stage-specific RNA regulation. These critical factors, particularly that of developmental timing, are often overlooked in mechanistic studies.
Extensive computational analysis, using public pipelines, suitable filtering criteria, and accessible custom code, identifies a number of RNA editing events that have the potential to impact conserved amino acids and have subsequent effects on protein function. These observations are supported through the integration of several public data sets to investigate the occurrence of the edits in other data sets, with many identified across multiple data sets. This approach allowed the identification of a number of novel A>I edits, some of which appear to be specific to this study, suggesting cell/developmental specificity, whilst others are present in the public data sets but went unannotated.
The study also considers the role of Adar in the generation of A>I edits, as would be expected, by assessing the effect of Adar expression on editing rates using public data from adar mutant tissue to demonstrate that the edits conserved between experiments are mainly Adar-sensitive. This would be stronger if the authors also performed Patch-seq experiments in adar mutants to increase confidence in the identified edit sites.
Weaknesses:
Whilst the study makes interesting observations using advanced computational approaches, it does not demonstrate the functional implications of the observed editing events. The functional impact of the edits is inferred from either the nature of the change to the coding sequence and the amino acid conservation, or through integration of other data sets. Although these could indeed imply function, further experimentation would be required to confirm such as using their Alphafold models to predict any changes in structure. This limitation is acknowledged by the authors, but the overall strength of the interpretation of the analysis could be softened to represent this.
The study uses public data from more diverse cellular populations to confirm the role of Adar in introducing the A>I edits. Whilst this is convincing, the ideal comparison to support the mechanism behind the identified edits would be to perform patch-seq experiments on 1b or 1s neurons from adar mutants. However, although this should be considered when interpreting the data, these experiments would be a large amount of work and beyond the scope of the paper.
By focusing on the potential impact of editing events that cause missense mutations in the CDS, the study may overlook the importance of edits in noncoding regions, which may impact miRNA or RNA-binding protein target sites. Further, the statement that noncanonical edits and those that induce silent mutations are likely to be less impactful is very broad and should be reconsidered. This is particularly the case when suggesting that silent mutations may not impact the biology. Given the importance of codon usage in translational fidelity, it is possible that silent mutations induced by either A>I or noncanonical editing in the CDS impact translation efficiency. Indeed, this could have a greater impact on protein production and transcript levels than a single amino acid change alone.
