Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLief FennoUniversity of Texas at Austin, Austin, United States of America
- Senior EditorJohn HuguenardStanford University School of Medicine, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
I read with much attention the manuscript titled "Generation of knock-in Cre and FlpO mouse lines for precise targeting of striatal projection neurons and dopaminergic neurons" in which the authors reveal five transgenic lines to target diverse neuronal populations of the basal ganglia. In addition, the authors also provide some assessments of the functionality of the lines.
Strengths:
Knockin lines made readily available through Jackson. Lines show specific expression.
Weaknesses:
Although I have no doubt these knocking lines will be broadly used by researchers in the field, I find the scientific advances of the study and the breadth of the resource provided quite limited. This is partly because 4 of these lines have been generated by other laboratories. For instance, there are already two other Dat-FlpO lines generated (JAX#: 033673 and 035436), with one of them already characterized (PMID: 33979604). Similarly, Drd1-Cre and Adora2a-Cre have been used abundantly since they were generated over a decade ago, and a novel Drd1-FlpO line has been characterized thoroughly recently (PMID: 38965445). Indeed, some of these lines were BAC transgenic, and I agree with the authors that there is a sound rationale for generating knock-in mice; however, the authors should then demonstrate if/how their new drivers are superior. Overall, the valuable resource generated by the authors would benefit from additional quantification and validation.
Reviewer #2 (Public review):
Summary:
The authors report the generation and validation of new knock-in mouse lines enabling precise targeting of basal ganglia projection neurons and midbrain dopamine neurons. By inserting recombinase sequences at endogenous loci, they provide tools that improve on older BAC-based models, with the additional benefit that all lines are openly available through Jackson Laboratories. This work is timely, fills a longstanding gap for the community, and will support both basic circuit mapping and disease-related research.
Strengths:
The major strength of this study is the provision of new genetic resources that will be widely used by the basal ganglia and dopamine research communities. Anatomical and electrophysiological data indicate appropriate expression and preserved intrinsic properties. The Flp lines, in particular, show labeling largely confined to basal ganglia circuits, making them especially attractive for circuit-based studies. A further strength is the use of a T2A-recombinase insertion at the native gene stop codon, which preserves endogenous regulation and maintains near-physiological expression of Adora2a, Drd1a, and DAT. The availability of both Cre and Flp versions enables powerful intersectional strategies, and open distribution through Jackson Laboratories ensures broad accessibility and long-term value.
Weaknesses:
The major limitation is the discrepancy between Cre and Flp lines, with Cre generally driving broader expression than Flp. This raises concerns about anatomical fidelity that require validation at the cellular level. For the DAT-FlpO line, efficiency remains insufficiently quantified, and higher-resolution co-labeling with TH immunostaining is needed. Electrophysiological comparisons between Cre and Flp versions are also incomplete; current data suggest potential physiological differences, which warrant additional statistical testing and, at a minimum, explicit discussion in the manuscript.
Reviewer #3 (Public review):
Summary:
Using latest knock-in technology, the authors generated a set of five mouse lines with expression of recombinases in striatal projection neurons and dopaminergic neurons for public use. They rigorously characterize the expression of the recombinases by intersectional crossing with reporter lines to demonstrate that these lines are faithful, and they perform electrophysiological experiments in slices to provide evidence that the respective neurons show the expected features in these assays.
Strengths:
The characterization of the new mouse lines is exceptional, and these will be widely used by the community. The mouse lines are openly available for the community to use.
Weaknesses:
No weaknesses were identified by this Reviewer.