Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJulien RocheIowa State University, Ames, United States of America
- Senior EditorAmy AndreottiIowa State University, Ames, United States of America
Reviewer #1 (Public review):
Summary:
This manuscript describes a chemical screen for activators of the eIF2 kinase GCN2 (EIF2AK4) in the integrated stress response (ISR). Recently, reported inhibitors of GCN2 and other protein kinases have been shown at certain concentrations to paradoxically activate GCN2. The study uses CHO cells and ISR reporter screens to identify a number of GCN2 activator compounds, including a potent "compound 20." These activators have implications for the development of new therapies for ISR-related diseases. For example, although not directly pursued in this study, these GCN2 activators could be helpful for the treatment of PVOD, which is reported for patients with certain GCN2 loss-of-function mutations. The identified activators are also suggested to engage with the GCN2 directly and can function while devoid of GCN1, a co-activator of GCN2.
Strengths:
The manuscript appears to be a largely rigorous study that flows in a logical manner. The topic is interesting and significant.
Weaknesses:
Portions of the manuscript are not fully clear. There are some experimental presentation and design concerns that should be addressed to support the stated conclusions.
Reviewer #2 (Public review):
Summary:
In this manuscript, Zhu, Emanuelli, and colleagues describe a novel pharmacological activator of the Integrated Stress Response kinase GCN2. The work is conclusive and biochemically solid. This work significantly adds to the pharmacological arsenal targeting the ISR and, in particular, GCN2.
Strengths:
Strong biochemistry, novel molecular activator of GCN2 (GCN1 independent).
Weaknesses:
The rationale for the screen is not exploited in the results (e.g., pathogenic GCN2 mutants), and lots of cell-based read-outs are not endogenous.
Major points
(1) Regarding the justification of the work. Since the authors justify the screen for GCN2 activators with loss-of-function mutants associated with diseases, it would be of interest to evaluate whether the best compounds identified in the study are indeed able to prompt activation of those mutants (or at least of the most prevalent). This approach could actually go in parallel with the docking experiments carried out in the last figure of the manuscript, where mutants could be modelized as well.
(2) The compounds are only tested using « artificial » proximal signaling outputs. It would be interesting to evaluate whether the best identified compounds are capable of prompting endogenous eIF2alpha phosphorylation in cellular models.
(3) Other GCN2 activators (other than GCN2iB, e.g., HC-7366) were recently identified. In this context, it would be of interest to carry out a small benchmarking study to evaluate how the compounds identified in the current study perform against the previously identified molecules.
Reviewer #3 (Public review):
Summary:
In this manuscript, the authors describe the results of a high-throughput screen for small-molecule activators of GCN2. Ultimately, they find 3 promising compounds. One of these three, compound 20 (C20), is of the most interest both for its potency and specificity. The major new finding is that this molecule appears to activate GCN2 independent of GCN1, which suggests that it works by a potentially novel mechanism. Biochemical analysis suggests that each binds in the ATP-binding pocket of GCN2, and that at least in vitro, C20 is a potent agonist. Structural modeling provides insight into how the three compounds might dock in the pocket and generates testable hypotheses as to why C20 perhaps acts through a different mechanism than other molecules.
Strengths:
Of the 3 compounds identified by the authors, C20 is the most interesting, not just for its intriguing mechanistic distinction as being GCN1-independent (shown genetically in two distinct cell lines, CHO and 293T in Figure 4, and in contrast to other GCN2 activators) but also for its potency. In in-cellulo assays, compound 21 appears as more of an ISR enhancer than an activator per se, and although compound 18 and compound 21 lead to upregulation of the ISR targets (Figure 2), that degree of upregulation is probably not significantly different from that induced by those compounds in Gcn2-/- cells. For C20, the effect appears stronger (although it is unclear whether the authors performed statistical analysis comparing the two genotypes in Figure 2D). In Figure 3, only C20 activates the ISR robustly in both CHO and 293T. Ultimately, C20 might be a tool for providing mechanistic insight into the details of GCN2 activation and regulation, and could be exploited therapeutically.
Weaknesses:
There are some limitations to the existing work. As the authors acknowledge, they do not use any of the compounds in animals; their in vivo efficacy, toxicity, and pharmacokinetics are unknown. But even in the context of the in cellulo experiments, it is puzzling that none of the three compounds, including C20, has any effects in HeLa cells when Neratinib does. It's beyond the scope of this paper to address definitively why that is, but it would at least be reassuring to know that C20 activates the ISR in a wider range of cells, including ideally some primary, non-immortalized cells. In addition, the ISR is a complex, feedback-regulated response whose output varies depending on the time point examined. The in cellulo analysis in this paper is limited to reporter assays at 18 hours and qRT-PCR assays at 4 and 8 hours. A more extensive examination of the behavior of the relevant ISR mRNAs and proteins (eIF2, ATF4, CHOP, cell viability, etc.) for C20 across a more extensive time course would give the reader a clearer sense of how this molecule affects ISR output. I also find it a bit strange that the authors describe C20 as "demonstrat(ing) weak inhibition of ... PKR"-the measured IC50 is ~4 μM, which is right around its EC50 for GCN2 activation. This raises the confounding possibility that C20 would simultaneously activate GCN2 while inhibiting PKR. While perhaps inhibition of PKR is not relevant under the conditions when GCN2 would be activated either experimentally or therapeutically, examining in cells the effects of C20 on GCN2 and PKR across a dose range would shed light on whether this cross-reactivity is likely to be of concern.