Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorHeather McFarlaneUniversity of Toronto, Toronto, Canada
- Senior EditorJürgen Kleine-VehnUniversity of Freiburg, Freiburg, Germany
Reviewer #1 (Public review):
Summary:
Plasmodesmata are channels that allow cell-cell communication in plants; based on the functional similarities between facilitated transport within plasmodesmata and into the nucleus, the authors speculate that nuclear pore complex proteins might be involved in plasmodesmata function. In this manuscript, they localize nuclear pore complex proteins to plasmodesmata using proteomics and heterologous overexpression. They also document a possible plasmodesmata transport defect in a mutant affecting one nuclear pore complex protein.
Strengths:
The main strength of this manuscript is the interesting and novel hypothesis. This work could open exciting new directions in our understanding of plasmodesmata function and cell-cell communication in plants. They also localized many NUPs (12/35 Arabidopsis NUPs).
Weaknesses:
The main weakness of this manuscript is that the data are incomplete. While the authors appropriately and frequently acknowledge caveats to their data, two controls are essential to interpret the results that fluorescently-tagged NUPs localize to the plasmodesmata: (1) assessment of the expression level of these fluorescently-tagged NUPs to determine whether the plasmodesmata localization might be an overexpression artefact; (2) assessment of the function of the fluorescently-tagged NUPs, either by molecular complementation of a knockout mutant phenotype or by biochemical methods to test whether the fluorescently-tagged NUP incorporates into nuclear pore complexes. Conducting these experiments for even one fluorescently-tagged NUP would substantially strengthen this manuscript.
Reviewer #2 (Public review):
Summary:
The authors aim to address whether nuclear pore complex components localize and function at PD in plant cells to mediate cell-to-cell communication.
Strengths:
(1) Novelty and Significance:
The core hypothesis, drawing parallels between PD and NPC transport, is highly original and addresses a critical gap in understanding plant intercellular communication. The idea that phase-separated domains formed by FG-NUPs could act as diffusion barriers at PD offers a plausible and sophisticated explanation for their complex transport properties, including size exclusion and facilitated translocation. This could fundamentally change how we view PD function.
(2) Comprehensive Evidence:
The study employs a rigorous and diverse set of experimental approaches, including a comprehensive bioinformatic analysis of both moss and Arabidopsis NUPs in available PD proteomic datasets, extensive imaging analysis of Nup localization in vivo, and functional transport assays using a loss-of-function nup mutant (cpr5). The transport assay is particularly important to provide functional evidence linking CPR5 to PD-mediated transport. The finding that callose levels were not significantly different in cpr5 mutants under these conditions is helpful and supports a distinct, callose-independent mechanism of transport regulation.
(3) Objectivity:
The authors are forthright in discussing the limitations and potential artifacts of their own data, clearly distinguishing between observations and definitive conclusions.
Weaknesses:
While the claims are generally justified as hypotheses or consistent observations, the authors themselves extensively detail the caveats, which are worth reiterating for clarity:
(1) Potential Overexpression Artifacts in Localization:
Although efforts were made to control expression levels, the authors acknowledge that transient overexpression could still lead to NUP accumulation at PD, either as a physiologically relevant accumulation under excess conditions or due to mis-targeting, or even as storage depots. The resolution of confocal microscopy also does not allow for a definitive conclusion on the nature of the location.
(2) Proteomics Purity:
The authors note that the presence of NUPs in PD fractions/proteomics cannot definitively rule out contamination, as PD cannot currently be purified to absolute homogeneity and is often contaminated with other organelles, including the nucleus.
(3) CPR5 Mutant Interpretation:
While cpr5 mutants exhibited reduced macromolecular transport, the authors state that they cannot exclude that the reduced transport is due to secondary effects in the cpr5 mutants, which show rather severe phenotypic defects. This is an important distinction, as CPR5 has known roles in defense responses and hormone signaling that could indirectly influence PD integrity, independent of callose deposition. The lack of effect on small molecule transport is a good control, but the broader pleiotropic effects of cpr5 mutants remain a consideration.
(4) Conceptual Distinction between NPC and PD:
The authors correctly point out that while similarities exist, the physical assembly of NUPs at PD must differ from that at the NPC due to the presence of the desmotubule and smaller cytoplasmic sleeve width at PD. Moreover, nucleocytoplasmic transport depends on karyopherin proteins that interact with the NPC central channel to complete the transport. Yet the role of karyopherins in this case is not clear. Therefore, the proposed "PD pore complex" may bear some NPC features, but not be identical.
Reviewer #3 (Public review):
Summary:
This manuscript presents a step towards testing the hypothesis that plasmodesmata have homology to nuclear pores. The similarities between the two structures have long been noted as both structures allow the transport of proteins and nucleic acids, and both structures are composed of curved membranes. The manuscript has identified nuclear pore proteins (NUPs) in plasmodesmal protein fractions and uses live imaging in a non-endogenous system and functional assays of a mutant to propose that this might be a bona fide association.
The conclusions the authors seek to draw are that: NUPs are present in plasmodesmal protein fractions; NUPs localise at plasmodesmata; NUPs might form a pore-gating complex at plasmodesmata, regulating non-specific (2xGFP) and specific (SHR) transport through plasmodesmata
The authors then use these conclusions to propose the possibility that phase separation mediates transport through plasmodesmata. If there is phase separation at plasmodesmata or a nuclear pore-like complex, it would revolutionise the community. However, this data is insufficient to act as a cornerstone for such a discovery.
Strengths:
The strength of the manuscript lies in the boldness and novelty of the idea.
Weaknesses:
The weaknesses lie in the lack of informative controls. The authors' own assessments of their data suggest they agree with this - in their abstract alone, they point out that the transport defects they observe might be off-target effects, and suggest there is a requirement in the future to determine whether the NUPs are bona fide PD components.
Across the proteomic and live imaging experiments, the conclusions could be stronger if they compared the NUP localisation and accumulation with ER proteins - the question of whether NUPs behave like other ER proteins is not addressed. As NUPs reside in the nuclear envelope, continuous with the ER, and the ER traverses plasmodesmata, a comparison between the NUPs and ER proteins would be extremely informative.
Regarding the proteomic identification of NUPs in plasmodesmal fractions, the authors place significant weight on their own metric for PD enrichment, the PD score. As I understand it, this a metric derived from addition of two factors: a two component enrichment score that is the difference between intensity of peptides of a given protein in the PD fraction and cell wall fraction, added to the difference between intensity of peptides of a given protein in the PD fraction and total cell fraction, and a feature score that is a factor that describes representation of protein domains contained in said given protein in the plasmodesmal fraction relative to the representation of that domain in proteins in the whole proteome. The features chosen for analysis are not indicated, and the feature factor, as I understand it, is a score common to all proteins with a given feature. While each of the factors carries a measure of meaning and information, I do not understand how adding them is mathematically or biologically meaningful.