Rejuvenation-Responsive and Senolytic-Sensitive Muscle Stem Cells Unveiled by CD200 and CD63 in Geriatric Muscle

  1. School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
  2. Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
  3. Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Tom Cheung
    The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
  • Senior Editor
    Kathryn Cheah
    University of Hong Kong, Hong Kong, Hong Kong

Reviewer #1 (Public review):

It is widely accepted that the number of muscle stem cells (MuSCs) declines with aging, leading to diminished regenerative capacity. In this study, when MuSCs were labeled with YFP at a young age, the authors found that the YFP-positive MuSC population remained stable with aging. However, VCAM1 and Pax7 expression levels were reduced in the YFP-positive MuSCs. These VCAM1-negative/low cells exhibited limited proliferative potential and reduced regenerative ability upon transplantation into MuSC-depleted mice. Furthermore, Vcam1-/low MuSCs were highly sensitive to senolysis and represented the population in which Vcam1 expression could be restored by DHT. Finally, the authors identified CD200 and CD63 as markers capable of detecting the entire geriatric MuSC population, including Vcam1-/low cells. Although numerous studies have reported an age-related decline in MuSC numbers, this study challenges that consensus. Therefore, the conclusions require further careful validation.

Major comments:

(1) As mentioned above, numerous studies have reported that the number of MuSCs declines with aging. The authors' claim is valid, as Pax7 and Vcam1 were widely used for these observations. However, age-related differences have also been reported even when using these markers (Porpiglia et al., Cell Stem Cell 2022; Liu et al., Cell Rep 2013). When comparing geriatric Vcam1⁺ MuSCs with young MuSCs in this study, did the authors observe any of the previously reported differences? Furthermore, would increasing the sample size in Figure 1 reveal a statistically significant difference? The lack of significance appears to result from variation within the young group. In addition, this reviewer requests the presentation of data on MuSC frequency in geriatric control mice using CD200 and CD63 in the final figure.

(2) Can the authors identify any unique characteristics of Pax7-VCAM-1 GER1-MuSCs using only the data generated in this study, without relying on public databases? For example, reduced expression of Vcam1 and Pax7. The results of such analyses should be presented.

(3) In the senolysis experiment, the authors state that GER1-MuSCs were depleted. However, no data are provided to support this conclusion. Quantitative cell count data would directly address this concern. In addition, the FACS profile corresponding to Figure 4D should be included.

(4) Figure S4: It remains unclear whether DHT enhances regenerative ability through restoration of the VCAM1 expression in GER1-MuSCs, as DHT also acts on non-MuSC populations. Analyses of the regenerative ability of Senolysis+DHT mice may help to clarify this issue.

(5) Why are there so many myonuclear transcripts detected in the single-cell RNA-seq data? Was this dataset actually generated using single-nucleus RNA-seq? This reviewer considers it inappropriate to directly compare scRNA-seq and snRNA-seq results.

Reviewer #2 (Public review):

In this study, Kim et al. explore the heterogeneity within the aged MuSC population using a mouse model that enables lineage tracing of MuSCs throughout life. The questions addressed in the manuscript are highly relevant to the fields of aging and stem cell biology, and the experimental approach overcomes limitations of earlier studies. However, some of the claims would benefit from additional data analysis, and the central claim of the identification of a "previously unrecognized subpopulation" of aged MuSCs should be evaluated in light of prior work that has also examined MuSC heterogeneity in aging.

Specific points:

(1) As a general comment that is transversal to multiple figures, several experiments should include a direct comparison to a young cohort. Previous studies have shown that the depletion of subpopulations with aging is observed early in the aging process, for example, the loss of Pax7-high MuSCs is observed already in 18‐month‐old mice (Li, 2019, doi: 10.15252/embj.2019102154). Using only mice at 12-14 months as the control group is therefore insufficient to claim that no changes occur with aging.

(2) One of the central claims of the manuscript is a challenge to the notion that MuSCs number declines with age. However, the data analysis associated with the quantification of YFP+ cells needs to be expanded to support this conclusion. The authors present YFP+ cells only as a proportion of Lin-neg cells. Since FAP numbers are known to decrease with aging, a stable proportion of YFP+ cells would simply indicate that MuSCs decline at the same rate as FAPs. To more accurately assess changes in MuSC abundance, the authors should report absolute numbers of YFP+ cells normalized to tissue mass (cells/ mg of muscle).

(3) The authors emphasize that several studies use VCAM1 as a surface marker to identify MuSCs. However, many other groups rely on α7-integrin, and according to Figure 1D, the decline in ITGA7 expression within the YFP+ population is not significant. Therefore, the suggestion that MuSC numbers have been misquantified with aging would apply only to a subset of studies. If the authors can demonstrate that YFP+ cell numbers (normalized per milligram of tissue) remain unchanged in geriatric mice, the discussion should directly address the discrepancies with studies that quantify MuSCs using the Lin−/α7-integrin+ strategy.

(4) The authors focus their attention on a population of VCAM-low/VCAM-neg subpopulation of MuSCs that is enriched in aging. However, the functional properties of this same population in middle-aged (or young) mice are not addressed. Thus, it remains unclear whether geriatric VCAM-low/VCAM-neg MuSCs lose regenerative potential or whether this subpopulation inherently possesses low regenerative capacity and simply expands during aging.

(5) According to Figure 1F, the majority of MuSCs appear to fall within the category of VCAM-low or VCAM-neg (over 80% by visual estimate). It would be important to have an exact quantification of these data. As a result, the assays testing the proliferative and regenerative capacity of VCAM-low/negative cells are effectively assessing the performance of more than 80% of geriatric MuSCs, which unsurprisingly show reduced efficiency. Perhaps more interesting is the fact that a population of VCAM-high geriatric MuSCs retains full regenerative potential. However, the existence of MuSCs that preserve regenerative potential into old age has been reported in other studies (Garcia-Prat, 2020, doi: 10.1038/s41556-020-00593-7 ; Li, 2019, doi: 10.15252/embj.2019102154). At this point, the central question is whether the authors are describing the same aging-resistant subpopulations of MuSCs using a new marker (VCAM) or whether this study truly identifies a new subpopulation of MuSCs. The authors should directly compare the YFP+VCAM+ aged cells with other subpopulations that maintain regenerative potential in aging.

(6) In Figure 3F, it is unclear from the data presentation and figure legend whether the authors are considering the average of fiber sizes in each mouse as a replicate (with three data points per condition), or applied statistical analysis directly to all individual fiber measurements. The very low p-values with n=3 are surprising. It is important to account for the fact that observations from the same mouse are correlated (shared microenvironment, mouse-specific effects) and therefore cannot be considered independent.

(7) Regarding Figure 5, it is unclear why ITGA7, a classical surface marker for MuSCs that appears unchanged in aged YFP+ MuSCs (Fig. 1F), is considered inadequate for detecting and isolating GERI-MuSCs.

Reviewer #3 (Public review):

Summary:

The manuscript by Kim et al. describes a MuSC subpopulation that loses VCam expression in geriatric muscle and shows reduced ability to contribute to muscle regeneration. They propose that this population underlies the reported decline of MuSCs in aged mice, suggesting that these cells remain present in geriatric muscle but are overlooked due to low or absent VCam expression. The identification of a subpopulation that changes with aging would be compelling and of interest to the field.

Strengths:

The authors employ a wide range of assays, from in vitro to in vivo systems, to characterize Vcam-low/negative cells from geriatric muscle. The loss of Vcam appears strong in geriatric mice. They further identify CD63 and CD200 as potential surface markers that remain stable with age, thereby enabling the isolation of MuSCs across different age groups.

Weaknesses:

Some issues remain before establishing whether this population represents a true functional subset or explains the reported decline in MuSC numbers in aged mice. A stronger fate assessment of Vcam-low/negative cells is needed to assess their propensity for cell death in vitro and in vivo (e.g., engraftment efficiency), and if this plays a role in their conclusions. Comparisons include young, middle-aged, and geriatric mice, but not aged (~24 months) mice, which are needed for direct assessment of previous reports of age-related MuSC decline. The suggestion that the Vcam-low/negative population reflects senescence appears premature, with few consistent markers for this fate, as well as the cells not exhibiting irreversible cell-cycle exit. Finally, validation of CD63 and CD200 as reliable age-independent MuSC markers requires further testing, specifically using the Pax7-YFP tracing model and co-labeling in geriatric mice.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation