Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorUrszula KrzychWalter Reed Army Institute of Research, Silver Spring, United States of America
- Senior EditorBavesh KanaUniversity of the Witwatersrand, Johannesburg, South Africa
Reviewer #1 (Public review):
Summary:
This study investigated the immunogenicity of a novel bivalent EABR mRNA vaccine for SARS-CoV-2 that expresses enveloped virus-like particles in pre-immune mice as a model for boosting the population that is already pre-immune to SARS-CoV-2. The study builds on promising data showing a monovalent EABR mRNA vaccine induced substantially higher antibody responses than a standard S mRNA vaccine in naïve mice. In pre-immune mice, the EABR booster increased the breadth and magnitude of the antibody response, but the effects were modest and often not statistically significant.
Strengths:
Evaluating a novel SARS-CoV-2 vaccine that was substantially superior in naive mice in pre-immune mice as a model for its potential in the pre-immune population.
Weaknesses:
(1) Overall, immune responses against Omicron variants were substantially lower than against the ancestral Wu-1 strain that the mice were primed with. The authors speculate this is evidence of immune imprinting, but don't have the appropriate controls (mice immunized 3 times with just the bivalent EABR vaccine) to discern this. Without this control, it's not clear if the lower immune responses to Omicron are due to immune imprinting (or original antigenic sin) or because the Omicron S immunogen is just inherently more poorly immunogenic than the S protein from the ancestral Wu-1 strain.
(2) The authors reported a statistically significant increase in antibody responses with the bivalent EABR vaccine booster when compared to the monovalent S mRNA vaccine, but consistently failed to show significantly higher responses when compared to the bivalent S mRNA vaccine, suggesting that in pre-immune mice, the EABR vaccine has no apparent advantage over the bivalent S mRNA vaccine which is the current standard. There were, however, some trends indicating the group sizes were insufficiently powered to see a difference. This is mostly glossed over throughout the manuscript. The discussion section needs to better acknowledge these limitations of their studies and the limited benefits of the EABR strategy in pre-immune mice vs the standard bivalent mRNA vaccine.
(3) The discussion would benefit from additional explanation about why they think the EABR S mRNA vaccine was substantially superior in naïve mice vs the standard S mRNA vaccine in their previously published work, but here, there is not much difference in pre-immune mice.
Reviewer #2 (Public review):
Summary:
In this manuscript, Fan, Cohen, and Dam et al. conducted a follow-up study to their prior work on the ESCRT- and ALIX-binding region (EABR) mRNA vaccine platform that they developed. They tested in mice whether vaccines made in this format will have improved binding/neutralization antibody capacity over conventional antigens when used as a booster. The authors tested this in both monovalent (Wu1 only) or bivalent (Wu1 + BA.5) designs. The authors found that across both monovalent and bivalent designs, the EABR antigens had improved antibody titers than conventional antigens, although they observed dampened titers against Omicron variants, likely due to immune imprinting. Deep mutational scanning experiments suggested that the improvement of the EABR format may be due to a more diversified antibody response. Finally, the authors demonstrate that co-expression of multiple spike proteins within a single cell can result in the formation of heterotrimers, which may have potential further usage as an antigen.
Strengths:
(1) The experiments are conducted well and are appropriate to address the questions at hand. Given the significant time that is needed for testing of pre-existing immunity, due to the requirement of pre-vaccinated animals, it is a strength that the authors have conducted a thorough experiment with appropriate groups.
(2) The improvement in titers associated with EABR antigens bodes well for its potential use as a vaccine platform.
Weaknesses:
As noted above, this type of study requires quite a bit of initial time, so the authors cannot be blamed for this, but unfortunately, the vaccine designs that were tested are quite outdated. BA.5 has long been replaced by other variants, and importantly, bivalent vaccines are no longer used. Testing of contemporaneous strains as well as monovalent variant vaccines would be desirable to support the study.