Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorYanchao BiPeking University, Beijing, China
- Senior EditorYanchao BiPeking University, Beijing, China
Reviewer #1 (Public review):
Summary:
This study examines letter-shape knowledge in a large cohort of children with minimal formal reading instruction. The authors report that these children can reliably distinguish upright from inverted letters despite limited letter naming abilities. They also show a visual-search advantage for upright over inverted letters, and this advantage correlates with letter-shape familiarity. These findings suggest that specialized letter-shape representations can emerge with very limited letter-sound mapping practice.
Strengths:
This study investigates whether children can develop letter-shape knowledge independently of letter-sound mapping abilities. This question is theoretically important, especially in light of functional subdivisions within the visual word form area (VWFA), with posterior regions associated with letter/orthographic shape and anterior regions with linguistic features of orthography (Caffarra et al., 2021; Lerma-Usabiaga et al., 2018). The study also includes a large sample of children at the very beginning of formal reading instruction, thereby minimizing the influence of explicit instruction on the formation of letter-shape knowledge.
Weakness:
A central concern is that a production task (naming) is used to index letter-name knowledge, whereas letter-shape knowledge is assessed with recognition. Production tasks impose additional demands (motor planning, articulation) and typically yield lower performance than recognition tasks (e.g., letter-sound verification). Thus, comparisons between letter-shape and letter-name knowledge are confounded by task type. The authors' partial-correlation and multiple-regression analyses linking familiarity (but not production) to the upright-search advantage are informative; however, they do not resolve the recognition-versus-production mismatch. Consequently, the current data cannot unambiguously support the claim that letter-shape representations are independent of letter-name knowledge.
Reviewer #2 (Public review):
Summary:
In this study, the authors propose that there are two types of letter knowledge: knowledge about letter sound and knowledge about letter shape. Based on previous studies on implicit statistical learning in adults and babies, the authors hypothesized that passive exposure to letters in the environment allows early readers to acquire knowledge of letter shapes even before knowledge of letter-sound association. Children performed a set of experiments that measures letter shape familiarity, letter-sound association performance, visual processing of letters, and a reading-related cognitive skill. The results show that even the children who have little to no knowledge of letter names are familiar with letter shapes, and that this letter shape familiarity is predictive of performance in visual processing of letters.
Strengths:
The authors' hypothesis is based on widely accepted findings in vision science that repeated exposure to certain stimuli promotes implicit learning of, for example, statistical properties of the stimuli. They used simple and well-established tasks in large-scale experiments with a special population (i.e., children). The data analysis is quite comprehensive, accounting for any alternative explanations when needed. The data support at least a part of their hypothesis that the knowledge of letter shapes is distinct from, and precedes, the knowledge of letter-sound association, and is associated with performance in visual processing of the letters. This study shed light on a rather overlooked aspect of letter knowledge, i.e., letter shapes, challenging the idea that letters are learned only through formal instruction and calling for future research on the role of passive exposure to letters in reading acquisition.
Weaknesses:
Although the authors have successfully identified the knowledge of letter shapes as another type of letter knowledge other than the knowledge of letter-sound association, the question of whether it drives the subsequent reading acquisition remains largely unanswered, despite it being strongly implied in the Introduction. The authors collected a RAN score, which is known to robustly predict future reading fluency, but it did not show a significant partial correlation with familiarity accuracy (i.e., familiarity accuracy is not necessary to predict RAN score). The authors discussed that the performance in visual processing of letters might capture unique variance in reading fluency unexplained by RAN scores, but currently, this claim seems speculative.
Since even children without formal literacy instruction were highly familiar with letter shapes, it would be reasonable to assume that they had obtained the knowledge through passive exposure. However, the role of passive exposure was not directly tested in the study.
Given the superimposed straight lines in Figure 2, I assume the authors computed Pearson correlation coefficients. Testing the statistical significance of the Pearson correlation coefficient requires the assumption of bivariate normality (and therefore constant variance of a variable across the range of the other). According to Figure 2, this doesn't seem to be met, as the familiarity accuracy is hitting the ceiling. The ceiling effect might not be critical in Figure 2, since it tends to attenuate correlation, not inflate it. But in Figures 3 and 4, the authors' conclusion depends on the non-significant partial correlation. In fact, the authors themselves wrote that the ceiling effect might lead to a non-significant correlation even if there is an actual effect (line 404).
Reviewer #3 (Public review):
Summary:
This study examined how young children with minimal reading instruction process letters, focusing on their familiarity with letter shapes, knowledge of letter names, and visual discrimination of upright versus inverted letters. Across four experiments, kindergarten and Grade 1 children could identify the correct orientation of letters even without knowing their names.
Strengths:
This study addresses an important research gap by examining whether children develop letter familiarity prior to formal literacy instruction and how this skill relates to reading-related cognitive abilities. By emphasizing letter familiarity alongside letter recognition, the study highlights a potentially overlooked yet important component of emergent literacy development.
Weaknesses:
The study's methods and results do not effectively test its stated research goals. Reading ability was not directly measured; instead, the authors inferred its relationship with reading from correlations between letter familiarity and reading-related cognitive measures, which limits the validity of their conclusions. Furthermore, the analytical approach was rather limited, relying primarily on simple and partial correlations without employing more advanced statistical methods that could better capture the underlying relationships.
Major Comments:
(1) Limited Novelty and Unclear Theoretical Contribution:
The authors aim to challenge the view that children acquire letter shape knowledge only through formal literacy instruction, but similar questions regarding letter familiarity have already been explored in previous research. The manuscript does not clearly articulate how the present study advances beyond existing findings or why examining letter familiarity specifically before formal instruction provides new theoretical insight. Moreover, if letter familiarity and letter recognition are treated as distinct constructs, the authors should better justify their differentiation and clarify the theoretical significance of focusing on familiarity as an independent component of emergent literacy.
(2) Overgeneralization to Reading Ability:
Although the study measured several literacy-related cognitive skills and examined correlations with letter familiarity, it did not directly assess children's reading ability, as participants had not yet received formal literacy instruction. Therefore, the conclusion that letter familiarity influences reading skills (e.g., Line 519: "Our results are broadly consistent with previous work that has highlighted print letter knowledge as a strong predictor of future reading skills") is not fully supported and should be clarified or revised. To draw conclusions about the impact on reading ability, a longitudinal study would be more appropriate, assessing the relationship between letter familiarity and reading skills after children have received formal literacy instruction. If a longitudinal study is not feasible, measuring familial risk for dyslexia could provide an alternative approach to infer the potential influence of letter familiarity on later reading development.
(3) Confusing and Limited Analytical Approach with Potential for More Sophisticated Modeling:
The study employs a confusing analytical approach, alternating between simple correlational analyses and group-based comparisons, which may introduce circularity - for example, defining high vs. low familiarity groups partly based on performance differences in upright versus inverted letters and then observing a visual search advantage for upright letters within these groups. Moreover, the analyses are relatively simple: although multiple linear regression is mentioned, the results are not fully reported. These approaches may not fully capture the complex relationships among letter familiarity, recognition, visual search performance, RAN, and other covariates. More sophisticated modeling, such as mixed-effects models to account for repeated measures, structural equation modeling to examine latent constructs, or multivariate approaches jointly modeling familiarity and recognition effects, could provide a clearer understanding of the unique contribution of letter shape familiarity to early literacy outcomes. In addition, a large number of correlations were conducted without correction for multiple comparisons, which may increase the risk of false positives and raise concerns about the reliability of some significant findings.